Step |
Hyp |
Ref |
Expression |
1 |
|
climinf.3 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climinf.4 |
|- ( ph -> M e. ZZ ) |
3 |
|
climinf.5 |
|- ( ph -> F : Z --> RR ) |
4 |
|
climinf.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
5 |
|
climinf.7 |
|- ( ph -> E. x e. RR A. k e. Z x <_ ( F ` k ) ) |
6 |
3
|
frnd |
|- ( ph -> ran F C_ RR ) |
7 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
8 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
9 |
2 8
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
10 |
9 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
11 |
|
fnfvelrn |
|- ( ( F Fn Z /\ M e. Z ) -> ( F ` M ) e. ran F ) |
12 |
7 10 11
|
syl2anc |
|- ( ph -> ( F ` M ) e. ran F ) |
13 |
12
|
ne0d |
|- ( ph -> ran F =/= (/) ) |
14 |
|
breq2 |
|- ( y = ( F ` k ) -> ( x <_ y <-> x <_ ( F ` k ) ) ) |
15 |
14
|
ralrn |
|- ( F Fn Z -> ( A. y e. ran F x <_ y <-> A. k e. Z x <_ ( F ` k ) ) ) |
16 |
15
|
rexbidv |
|- ( F Fn Z -> ( E. x e. RR A. y e. ran F x <_ y <-> E. x e. RR A. k e. Z x <_ ( F ` k ) ) ) |
17 |
7 16
|
syl |
|- ( ph -> ( E. x e. RR A. y e. ran F x <_ y <-> E. x e. RR A. k e. Z x <_ ( F ` k ) ) ) |
18 |
5 17
|
mpbird |
|- ( ph -> E. x e. RR A. y e. ran F x <_ y ) |
19 |
6 13 18
|
3jca |
|- ( ph -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) ) |
21 |
|
infrecl |
|- ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) -> inf ( ran F , RR , < ) e. RR ) |
22 |
20 21
|
syl |
|- ( ( ph /\ y e. RR+ ) -> inf ( ran F , RR , < ) e. RR ) |
23 |
|
simpr |
|- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
24 |
22 23
|
ltaddrpd |
|- ( ( ph /\ y e. RR+ ) -> inf ( ran F , RR , < ) < ( inf ( ran F , RR , < ) + y ) ) |
25 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
26 |
25
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> y e. RR ) |
27 |
22 26
|
readdcld |
|- ( ( ph /\ y e. RR+ ) -> ( inf ( ran F , RR , < ) + y ) e. RR ) |
28 |
|
infrglb |
|- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) /\ ( inf ( ran F , RR , < ) + y ) e. RR ) -> ( inf ( ran F , RR , < ) < ( inf ( ran F , RR , < ) + y ) <-> E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) ) ) |
29 |
20 27 28
|
syl2anc |
|- ( ( ph /\ y e. RR+ ) -> ( inf ( ran F , RR , < ) < ( inf ( ran F , RR , < ) + y ) <-> E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) ) ) |
30 |
24 29
|
mpbid |
|- ( ( ph /\ y e. RR+ ) -> E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) ) |
31 |
6
|
sselda |
|- ( ( ph /\ k e. ran F ) -> k e. RR ) |
32 |
31
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> k e. RR ) |
33 |
22
|
adantr |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> inf ( ran F , RR , < ) e. RR ) |
34 |
25
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> y e. RR ) |
35 |
33 34
|
readdcld |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( inf ( ran F , RR , < ) + y ) e. RR ) |
36 |
32 35 34
|
ltsub1d |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( k < ( inf ( ran F , RR , < ) + y ) <-> ( k - y ) < ( ( inf ( ran F , RR , < ) + y ) - y ) ) ) |
37 |
6 13 18 21
|
syl3anc |
|- ( ph -> inf ( ran F , RR , < ) e. RR ) |
38 |
37
|
recnd |
|- ( ph -> inf ( ran F , RR , < ) e. CC ) |
39 |
38
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> inf ( ran F , RR , < ) e. CC ) |
40 |
34
|
recnd |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> y e. CC ) |
41 |
39 40
|
pncand |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( ( inf ( ran F , RR , < ) + y ) - y ) = inf ( ran F , RR , < ) ) |
42 |
41
|
breq2d |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( ( k - y ) < ( ( inf ( ran F , RR , < ) + y ) - y ) <-> ( k - y ) < inf ( ran F , RR , < ) ) ) |
43 |
36 42
|
bitrd |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( k < ( inf ( ran F , RR , < ) + y ) <-> ( k - y ) < inf ( ran F , RR , < ) ) ) |
44 |
43
|
biimpd |
|- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( k < ( inf ( ran F , RR , < ) + y ) -> ( k - y ) < inf ( ran F , RR , < ) ) ) |
45 |
44
|
reximdva |
|- ( ( ph /\ y e. RR+ ) -> ( E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) -> E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) ) ) |
46 |
30 45
|
mpd |
|- ( ( ph /\ y e. RR+ ) -> E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) ) |
47 |
|
oveq1 |
|- ( k = ( F ` j ) -> ( k - y ) = ( ( F ` j ) - y ) ) |
48 |
47
|
breq1d |
|- ( k = ( F ` j ) -> ( ( k - y ) < inf ( ran F , RR , < ) <-> ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) ) |
49 |
48
|
rexrn |
|- ( F Fn Z -> ( E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) <-> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) ) |
50 |
7 49
|
syl |
|- ( ph -> ( E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) <-> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) ) |
51 |
50
|
biimpa |
|- ( ( ph /\ E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) ) -> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) |
52 |
46 51
|
syldan |
|- ( ( ph /\ y e. RR+ ) -> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) |
53 |
3
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> F : Z --> RR ) |
54 |
1
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
55 |
|
ffvelrn |
|- ( ( F : Z --> RR /\ k e. Z ) -> ( F ` k ) e. RR ) |
56 |
53 54 55
|
syl2an |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. RR ) |
57 |
|
simpl |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> j e. Z ) |
58 |
|
ffvelrn |
|- ( ( F : Z --> RR /\ j e. Z ) -> ( F ` j ) e. RR ) |
59 |
53 57 58
|
syl2an |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) e. RR ) |
60 |
37
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> inf ( ran F , RR , < ) e. RR ) |
61 |
|
simprr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> k e. ( ZZ>= ` j ) ) |
62 |
|
fzssuz |
|- ( j ... k ) C_ ( ZZ>= ` j ) |
63 |
|
uzss |
|- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` M ) ) |
64 |
63 1
|
sseqtrrdi |
|- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ Z ) |
65 |
64 1
|
eleq2s |
|- ( j e. Z -> ( ZZ>= ` j ) C_ Z ) |
66 |
65
|
ad2antrl |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ZZ>= ` j ) C_ Z ) |
67 |
62 66
|
sstrid |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... k ) C_ Z ) |
68 |
|
ffvelrn |
|- ( ( F : Z --> RR /\ n e. Z ) -> ( F ` n ) e. RR ) |
69 |
68
|
ralrimiva |
|- ( F : Z --> RR -> A. n e. Z ( F ` n ) e. RR ) |
70 |
3 69
|
syl |
|- ( ph -> A. n e. Z ( F ` n ) e. RR ) |
71 |
70
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. Z ( F ` n ) e. RR ) |
72 |
|
ssralv |
|- ( ( j ... k ) C_ Z -> ( A. n e. Z ( F ` n ) e. RR -> A. n e. ( j ... k ) ( F ` n ) e. RR ) ) |
73 |
67 71 72
|
sylc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. ( j ... k ) ( F ` n ) e. RR ) |
74 |
73
|
r19.21bi |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... k ) ) -> ( F ` n ) e. RR ) |
75 |
|
fzssuz |
|- ( j ... ( k - 1 ) ) C_ ( ZZ>= ` j ) |
76 |
75 66
|
sstrid |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... ( k - 1 ) ) C_ Z ) |
77 |
76
|
sselda |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> n e. Z ) |
78 |
4
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
79 |
78
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. k e. Z ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
80 |
|
fvoveq1 |
|- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
81 |
|
fveq2 |
|- ( k = n -> ( F ` k ) = ( F ` n ) ) |
82 |
80 81
|
breq12d |
|- ( k = n -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) ) |
83 |
82
|
rspccva |
|- ( ( A. k e. Z ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ n e. Z ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
84 |
79 83
|
sylan |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. Z ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
85 |
77 84
|
syldan |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
86 |
61 74 85
|
monoord2 |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) <_ ( F ` j ) ) |
87 |
56 59 60 86
|
lesub1dd |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) <_ ( ( F ` j ) - inf ( ran F , RR , < ) ) ) |
88 |
56 60
|
resubcld |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) e. RR ) |
89 |
59 60
|
resubcld |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) - inf ( ran F , RR , < ) ) e. RR ) |
90 |
25
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> y e. RR ) |
91 |
|
lelttr |
|- ( ( ( ( F ` k ) - inf ( ran F , RR , < ) ) e. RR /\ ( ( F ` j ) - inf ( ran F , RR , < ) ) e. RR /\ y e. RR ) -> ( ( ( ( F ` k ) - inf ( ran F , RR , < ) ) <_ ( ( F ` j ) - inf ( ran F , RR , < ) ) /\ ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
92 |
88 89 90 91
|
syl3anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( ( F ` k ) - inf ( ran F , RR , < ) ) <_ ( ( F ` j ) - inf ( ran F , RR , < ) ) /\ ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
93 |
87 92
|
mpand |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` j ) - inf ( ran F , RR , < ) ) < y -> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
94 |
|
ltsub23 |
|- ( ( ( F ` j ) e. RR /\ y e. RR /\ inf ( ran F , RR , < ) e. RR ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) <-> ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) ) |
95 |
59 90 60 94
|
syl3anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) <-> ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) ) |
96 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ran F C_ RR ) |
97 |
7
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> F Fn Z ) |
98 |
|
fnfvelrn |
|- ( ( F Fn Z /\ k e. Z ) -> ( F ` k ) e. ran F ) |
99 |
97 54 98
|
syl2an |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. ran F ) |
100 |
96 99
|
sseldd |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. RR ) |
101 |
18
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> E. x e. RR A. y e. ran F x <_ y ) |
102 |
|
infrelb |
|- ( ( ran F C_ RR /\ E. x e. RR A. y e. ran F x <_ y /\ ( F ` k ) e. ran F ) -> inf ( ran F , RR , < ) <_ ( F ` k ) ) |
103 |
96 101 99 102
|
syl3anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> inf ( ran F , RR , < ) <_ ( F ` k ) ) |
104 |
60 100 103
|
abssubge0d |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) = ( ( F ` k ) - inf ( ran F , RR , < ) ) ) |
105 |
104
|
breq1d |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y <-> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
106 |
93 95 105
|
3imtr4d |
|- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
107 |
106
|
anassrs |
|- ( ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
108 |
107
|
ralrimdva |
|- ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
109 |
108
|
reximdva |
|- ( ( ph /\ y e. RR+ ) -> ( E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
110 |
52 109
|
mpd |
|- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) |
111 |
110
|
ralrimiva |
|- ( ph -> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) |
112 |
1
|
fvexi |
|- Z e. _V |
113 |
|
fex |
|- ( ( F : Z --> RR /\ Z e. _V ) -> F e. _V ) |
114 |
3 112 113
|
sylancl |
|- ( ph -> F e. _V ) |
115 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
116 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
117 |
116
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
118 |
1 2 114 115 38 117
|
clim2c |
|- ( ph -> ( F ~~> inf ( ran F , RR , < ) <-> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
119 |
111 118
|
mpbird |
|- ( ph -> F ~~> inf ( ran F , RR , < ) ) |