Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climlec2.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climlec2.3 |
|- ( ph -> A e. RR ) |
4 |
|
climlec2.4 |
|- ( ph -> F ~~> B ) |
5 |
|
climlec2.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
6 |
|
climlec2.6 |
|- ( ( ph /\ k e. Z ) -> A <_ ( F ` k ) ) |
7 |
3
|
recnd |
|- ( ph -> A e. CC ) |
8 |
|
0z |
|- 0 e. ZZ |
9 |
|
uzssz |
|- ( ZZ>= ` 0 ) C_ ZZ |
10 |
|
zex |
|- ZZ e. _V |
11 |
9 10
|
climconst2 |
|- ( ( A e. CC /\ 0 e. ZZ ) -> ( ZZ X. { A } ) ~~> A ) |
12 |
7 8 11
|
sylancl |
|- ( ph -> ( ZZ X. { A } ) ~~> A ) |
13 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
14 |
13 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
15 |
|
fvconst2g |
|- ( ( A e. RR /\ k e. ZZ ) -> ( ( ZZ X. { A } ) ` k ) = A ) |
16 |
3 14 15
|
syl2an |
|- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { A } ) ` k ) = A ) |
17 |
3
|
adantr |
|- ( ( ph /\ k e. Z ) -> A e. RR ) |
18 |
16 17
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { A } ) ` k ) e. RR ) |
19 |
16 6
|
eqbrtrd |
|- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { A } ) ` k ) <_ ( F ` k ) ) |
20 |
1 2 12 4 18 5 19
|
climle |
|- ( ph -> A <_ B ) |