Step |
Hyp |
Ref |
Expression |
1 |
|
climleltrp.k |
|- F/ k ph |
2 |
|
climleltrp.f |
|- F/_ k F |
3 |
|
climleltrp.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climleltrp.n |
|- ( ph -> N e. Z ) |
5 |
|
climleltrp.r |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
6 |
|
climleltrp.a |
|- ( ph -> F ~~> A ) |
7 |
|
climleltrp.c |
|- ( ph -> C e. RR ) |
8 |
|
climleltrp.l |
|- ( ph -> A <_ C ) |
9 |
|
climleltrp.x |
|- ( ph -> X e. RR+ ) |
10 |
4 3
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
11 |
|
uzss |
|- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
12 |
10 11
|
syl |
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
13 |
12 3
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` N ) C_ Z ) |
14 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
15 |
14 10
|
sselid |
|- ( ph -> N e. ZZ ) |
16 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
17 |
|
eqidd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = ( F ` k ) ) |
18 |
1 2 15 16 6 17 9
|
clim2d |
|- ( ph -> E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) |
19 |
|
nfv |
|- F/ k j e. ( ZZ>= ` N ) |
20 |
1 19
|
nfan |
|- F/ k ( ph /\ j e. ( ZZ>= ` N ) ) |
21 |
|
simplll |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ph ) |
22 |
|
uzss |
|- ( j e. ( ZZ>= ` N ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` N ) ) |
23 |
22
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` N ) ) |
24 |
|
simpr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. ( ZZ>= ` j ) ) |
25 |
23 24
|
sseldd |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. ( ZZ>= ` N ) ) |
26 |
25
|
adantr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> k e. ( ZZ>= ` N ) ) |
27 |
|
simpr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( abs ` ( ( F ` k ) - A ) ) < X ) |
28 |
17 5
|
eqeltrd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
29 |
28
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) e. RR ) |
30 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
31 |
6 30
|
syl |
|- ( ph -> A e. CC ) |
32 |
31
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A e. CC ) |
33 |
28
|
recnd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. CC ) |
34 |
32 33
|
pncan3d |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( A + ( ( F ` k ) - A ) ) = ( F ` k ) ) |
35 |
34
|
eqcomd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = ( A + ( ( F ` k ) - A ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) = ( A + ( ( F ` k ) - A ) ) ) |
37 |
36 29
|
eqeltrrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( A + ( ( F ` k ) - A ) ) e. RR ) |
38 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> C e. RR ) |
39 |
1 2 16 15 6 5
|
climreclf |
|- ( ph -> A e. RR ) |
40 |
39
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A e. RR ) |
41 |
29 40
|
resubcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) e. RR ) |
42 |
38 41
|
readdcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( C + ( ( F ` k ) - A ) ) e. RR ) |
43 |
9
|
rpred |
|- ( ph -> X e. RR ) |
44 |
43
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> X e. RR ) |
45 |
38 44
|
readdcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( C + X ) e. RR ) |
46 |
8
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A <_ C ) |
47 |
40 38 41 46
|
leadd1dd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( A + ( ( F ` k ) - A ) ) <_ ( C + ( ( F ` k ) - A ) ) ) |
48 |
33
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) e. CC ) |
49 |
32
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A e. CC ) |
50 |
48 49
|
subcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) e. CC ) |
51 |
50
|
abscld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( abs ` ( ( F ` k ) - A ) ) e. RR ) |
52 |
41
|
leabsd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) <_ ( abs ` ( ( F ` k ) - A ) ) ) |
53 |
|
simpr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( abs ` ( ( F ` k ) - A ) ) < X ) |
54 |
41 51 44 52 53
|
lelttrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) < X ) |
55 |
41 44 38 54
|
ltadd2dd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( C + ( ( F ` k ) - A ) ) < ( C + X ) ) |
56 |
37 42 45 47 55
|
lelttrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( A + ( ( F ` k ) - A ) ) < ( C + X ) ) |
57 |
36 56
|
eqbrtrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) < ( C + X ) ) |
58 |
29 57
|
jca |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
59 |
21 26 27 58
|
syl21anc |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
60 |
59
|
adantrl |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
61 |
60
|
ex |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
62 |
20 61
|
ralimdaa |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
63 |
62
|
reximdva |
|- ( ph -> ( E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
64 |
18 63
|
mpd |
|- ( ph -> E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
65 |
|
ssrexv |
|- ( ( ZZ>= ` N ) C_ Z -> ( E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
66 |
13 64 65
|
sylc |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |