Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climmptf.k | |- F/_ k F |
|
climmptf.m | |- ( ph -> M e. ZZ ) |
||
climmptf.f | |- ( ph -> F e. V ) |
||
climmptf.z | |- Z = ( ZZ>= ` M ) |
||
climmptf.g | |- G = ( k e. Z |-> ( F ` k ) ) |
||
Assertion | climmptf | |- ( ph -> ( F ~~> A <-> G ~~> A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climmptf.k | |- F/_ k F |
|
2 | climmptf.m | |- ( ph -> M e. ZZ ) |
|
3 | climmptf.f | |- ( ph -> F e. V ) |
|
4 | climmptf.z | |- Z = ( ZZ>= ` M ) |
|
5 | climmptf.g | |- G = ( k e. Z |-> ( F ` k ) ) |
|
6 | nfcv | |- F/_ j ( F ` k ) |
|
7 | nfcv | |- F/_ k j |
|
8 | 1 7 | nffv | |- F/_ k ( F ` j ) |
9 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
10 | 6 8 9 | cbvmpt | |- ( k e. Z |-> ( F ` k ) ) = ( j e. Z |-> ( F ` j ) ) |
11 | 5 10 | eqtri | |- G = ( j e. Z |-> ( F ` j ) ) |
12 | 4 11 | climmpt | |- ( ( M e. ZZ /\ F e. V ) -> ( F ~~> A <-> G ~~> A ) ) |
13 | 2 3 12 | syl2anc | |- ( ph -> ( F ~~> A <-> G ~~> A ) ) |