| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climmulf.1 |  |-  F/ k ph | 
						
							| 2 |  | climmulf.2 |  |-  F/_ k F | 
						
							| 3 |  | climmulf.3 |  |-  F/_ k G | 
						
							| 4 |  | climmulf.4 |  |-  F/_ k H | 
						
							| 5 |  | climmulf.5 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 6 |  | climmulf.6 |  |-  ( ph -> M e. ZZ ) | 
						
							| 7 |  | climmulf.7 |  |-  ( ph -> F ~~> A ) | 
						
							| 8 |  | climmulf.8 |  |-  ( ph -> H e. X ) | 
						
							| 9 |  | climmulf.9 |  |-  ( ph -> G ~~> B ) | 
						
							| 10 |  | climmulf.10 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 11 |  | climmulf.11 |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) | 
						
							| 12 |  | climmulf.12 |  |-  ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 13 |  | nfcv |  |-  F/_ k j | 
						
							| 14 | 13 | nfel1 |  |-  F/ k j e. Z | 
						
							| 15 | 1 14 | nfan |  |-  F/ k ( ph /\ j e. Z ) | 
						
							| 16 | 2 13 | nffv |  |-  F/_ k ( F ` j ) | 
						
							| 17 | 16 | nfel1 |  |-  F/ k ( F ` j ) e. CC | 
						
							| 18 | 15 17 | nfim |  |-  F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) | 
						
							| 19 |  | eleq1w |  |-  ( k = j -> ( k e. Z <-> j e. Z ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) | 
						
							| 21 |  | fveq2 |  |-  ( k = j -> ( F ` k ) = ( F ` j ) ) | 
						
							| 22 | 21 | eleq1d |  |-  ( k = j -> ( ( F ` k ) e. CC <-> ( F ` j ) e. CC ) ) | 
						
							| 23 | 20 22 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) ) ) | 
						
							| 24 | 18 23 10 | chvarfv |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) | 
						
							| 25 | 3 13 | nffv |  |-  F/_ k ( G ` j ) | 
						
							| 26 | 25 | nfel1 |  |-  F/ k ( G ` j ) e. CC | 
						
							| 27 | 15 26 | nfim |  |-  F/ k ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) | 
						
							| 28 |  | fveq2 |  |-  ( k = j -> ( G ` k ) = ( G ` j ) ) | 
						
							| 29 | 28 | eleq1d |  |-  ( k = j -> ( ( G ` k ) e. CC <-> ( G ` j ) e. CC ) ) | 
						
							| 30 | 20 29 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) <-> ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) ) ) | 
						
							| 31 | 27 30 11 | chvarfv |  |-  ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) | 
						
							| 32 | 4 13 | nffv |  |-  F/_ k ( H ` j ) | 
						
							| 33 |  | nfcv |  |-  F/_ k x. | 
						
							| 34 | 16 33 25 | nfov |  |-  F/_ k ( ( F ` j ) x. ( G ` j ) ) | 
						
							| 35 | 32 34 | nfeq |  |-  F/ k ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) | 
						
							| 36 | 15 35 | nfim |  |-  F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) | 
						
							| 37 |  | fveq2 |  |-  ( k = j -> ( H ` k ) = ( H ` j ) ) | 
						
							| 38 | 21 28 | oveq12d |  |-  ( k = j -> ( ( F ` k ) x. ( G ` k ) ) = ( ( F ` j ) x. ( G ` j ) ) ) | 
						
							| 39 | 37 38 | eqeq12d |  |-  ( k = j -> ( ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) <-> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) ) | 
						
							| 40 | 20 39 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) ) ) | 
						
							| 41 | 36 40 12 | chvarfv |  |-  ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) | 
						
							| 42 | 5 6 7 8 9 24 31 41 | climmul |  |-  ( ph -> H ~~> ( A x. B ) ) |