Step |
Hyp |
Ref |
Expression |
1 |
|
climmulf.1 |
|- F/ k ph |
2 |
|
climmulf.2 |
|- F/_ k F |
3 |
|
climmulf.3 |
|- F/_ k G |
4 |
|
climmulf.4 |
|- F/_ k H |
5 |
|
climmulf.5 |
|- Z = ( ZZ>= ` M ) |
6 |
|
climmulf.6 |
|- ( ph -> M e. ZZ ) |
7 |
|
climmulf.7 |
|- ( ph -> F ~~> A ) |
8 |
|
climmulf.8 |
|- ( ph -> H e. X ) |
9 |
|
climmulf.9 |
|- ( ph -> G ~~> B ) |
10 |
|
climmulf.10 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
11 |
|
climmulf.11 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
12 |
|
climmulf.12 |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
13 |
|
nfcv |
|- F/_ k j |
14 |
13
|
nfel1 |
|- F/ k j e. Z |
15 |
1 14
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
16 |
2 13
|
nffv |
|- F/_ k ( F ` j ) |
17 |
16
|
nfel1 |
|- F/ k ( F ` j ) e. CC |
18 |
15 17
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) |
19 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
20 |
19
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
21 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
22 |
21
|
eleq1d |
|- ( k = j -> ( ( F ` k ) e. CC <-> ( F ` j ) e. CC ) ) |
23 |
20 22
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) ) ) |
24 |
18 23 10
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) |
25 |
3 13
|
nffv |
|- F/_ k ( G ` j ) |
26 |
25
|
nfel1 |
|- F/ k ( G ` j ) e. CC |
27 |
15 26
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) |
28 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
29 |
28
|
eleq1d |
|- ( k = j -> ( ( G ` k ) e. CC <-> ( G ` j ) e. CC ) ) |
30 |
20 29
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) <-> ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) ) ) |
31 |
27 30 11
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) |
32 |
4 13
|
nffv |
|- F/_ k ( H ` j ) |
33 |
|
nfcv |
|- F/_ k x. |
34 |
16 33 25
|
nfov |
|- F/_ k ( ( F ` j ) x. ( G ` j ) ) |
35 |
32 34
|
nfeq |
|- F/ k ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) |
36 |
15 35
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) |
37 |
|
fveq2 |
|- ( k = j -> ( H ` k ) = ( H ` j ) ) |
38 |
21 28
|
oveq12d |
|- ( k = j -> ( ( F ` k ) x. ( G ` k ) ) = ( ( F ` j ) x. ( G ` j ) ) ) |
39 |
37 38
|
eqeq12d |
|- ( k = j -> ( ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) <-> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) ) |
40 |
20 39
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) ) ) |
41 |
36 40 12
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) |
42 |
5 6 7 8 9 24 31 41
|
climmul |
|- ( ph -> H ~~> ( A x. B ) ) |