Step |
Hyp |
Ref |
Expression |
1 |
|
climneg.1 |
|- F/ k ph |
2 |
|
climneg.2 |
|- F/_ k F |
3 |
|
climneg.3 |
|- Z = ( ZZ>= ` M ) |
4 |
|
climneg.4 |
|- ( ph -> M e. ZZ ) |
5 |
|
climneg.5 |
|- ( ph -> F ~~> A ) |
6 |
|
climneg.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
7 |
|
nfmpt1 |
|- F/_ k ( k e. Z |-> -u 1 ) |
8 |
|
nfmpt1 |
|- F/_ k ( k e. Z |-> -u ( F ` k ) ) |
9 |
3
|
fvexi |
|- Z e. _V |
10 |
9
|
mptex |
|- ( k e. Z |-> -u 1 ) e. _V |
11 |
10
|
a1i |
|- ( ph -> ( k e. Z |-> -u 1 ) e. _V ) |
12 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
13 |
12
|
negcld |
|- ( ph -> -u 1 e. CC ) |
14 |
|
eqidd |
|- ( j e. Z -> ( k e. Z |-> -u 1 ) = ( k e. Z |-> -u 1 ) ) |
15 |
|
eqidd |
|- ( ( j e. Z /\ k = j ) -> -u 1 = -u 1 ) |
16 |
|
id |
|- ( j e. Z -> j e. Z ) |
17 |
|
1cnd |
|- ( j e. Z -> 1 e. CC ) |
18 |
17
|
negcld |
|- ( j e. Z -> -u 1 e. CC ) |
19 |
14 15 16 18
|
fvmptd |
|- ( j e. Z -> ( ( k e. Z |-> -u 1 ) ` j ) = -u 1 ) |
20 |
19
|
adantl |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> -u 1 ) ` j ) = -u 1 ) |
21 |
3 4 11 13 20
|
climconst |
|- ( ph -> ( k e. Z |-> -u 1 ) ~~> -u 1 ) |
22 |
9
|
mptex |
|- ( k e. Z |-> -u ( F ` k ) ) e. _V |
23 |
22
|
a1i |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) e. _V ) |
24 |
|
neg1cn |
|- -u 1 e. CC |
25 |
|
eqid |
|- ( k e. Z |-> -u 1 ) = ( k e. Z |-> -u 1 ) |
26 |
25
|
fvmpt2 |
|- ( ( k e. Z /\ -u 1 e. CC ) -> ( ( k e. Z |-> -u 1 ) ` k ) = -u 1 ) |
27 |
24 26
|
mpan2 |
|- ( k e. Z -> ( ( k e. Z |-> -u 1 ) ` k ) = -u 1 ) |
28 |
27 24
|
eqeltrdi |
|- ( k e. Z -> ( ( k e. Z |-> -u 1 ) ` k ) e. CC ) |
29 |
28
|
adantl |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> -u 1 ) ` k ) e. CC ) |
30 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
31 |
6
|
negcld |
|- ( ( ph /\ k e. Z ) -> -u ( F ` k ) e. CC ) |
32 |
|
eqid |
|- ( k e. Z |-> -u ( F ` k ) ) = ( k e. Z |-> -u ( F ` k ) ) |
33 |
32
|
fvmpt2 |
|- ( ( k e. Z /\ -u ( F ` k ) e. CC ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = -u ( F ` k ) ) |
34 |
30 31 33
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = -u ( F ` k ) ) |
35 |
6
|
mulm1d |
|- ( ( ph /\ k e. Z ) -> ( -u 1 x. ( F ` k ) ) = -u ( F ` k ) ) |
36 |
27
|
eqcomd |
|- ( k e. Z -> -u 1 = ( ( k e. Z |-> -u 1 ) ` k ) ) |
37 |
36
|
adantl |
|- ( ( ph /\ k e. Z ) -> -u 1 = ( ( k e. Z |-> -u 1 ) ` k ) ) |
38 |
37
|
oveq1d |
|- ( ( ph /\ k e. Z ) -> ( -u 1 x. ( F ` k ) ) = ( ( ( k e. Z |-> -u 1 ) ` k ) x. ( F ` k ) ) ) |
39 |
34 35 38
|
3eqtr2d |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = ( ( ( k e. Z |-> -u 1 ) ` k ) x. ( F ` k ) ) ) |
40 |
1 7 2 8 3 4 21 23 5 29 6 39
|
climmulf |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) ~~> ( -u 1 x. A ) ) |
41 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
42 |
5 41
|
syl |
|- ( ph -> A e. CC ) |
43 |
42
|
mulm1d |
|- ( ph -> ( -u 1 x. A ) = -u A ) |
44 |
40 43
|
breqtrd |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) ~~> -u A ) |