Description: The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climprod1.1 | |- Z = ( ZZ>= ` M ) |
|
| climprod1.2 | |- ( ph -> M e. ZZ ) |
||
| Assertion | climprod1 | |- ( ph -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climprod1.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climprod1.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | 1 | prodfclim1 | |- ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 ) |
| 4 | 2 3 | syl | |- ( ph -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 ) |