Step |
Hyp |
Ref |
Expression |
1 |
|
climrec.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climrec.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climrec.3 |
|- ( ph -> G ~~> A ) |
4 |
|
climrec.4 |
|- ( ph -> A =/= 0 ) |
5 |
|
climrec.5 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
6 |
|
climrec.6 |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) |
7 |
|
climrec.7 |
|- ( ph -> H e. W ) |
8 |
|
climcl |
|- ( G ~~> A -> A e. CC ) |
9 |
3 8
|
syl |
|- ( ph -> A e. CC ) |
10 |
4
|
neneqd |
|- ( ph -> -. A = 0 ) |
11 |
|
c0ex |
|- 0 e. _V |
12 |
11
|
elsn2 |
|- ( A e. { 0 } <-> A = 0 ) |
13 |
10 12
|
sylnibr |
|- ( ph -> -. A e. { 0 } ) |
14 |
9 13
|
eldifd |
|- ( ph -> A e. ( CC \ { 0 } ) ) |
15 |
|
eqidd |
|- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
16 |
|
simpr |
|- ( ( ( ph /\ z e. ( CC \ { 0 } ) ) /\ w = z ) -> w = z ) |
17 |
16
|
oveq2d |
|- ( ( ( ph /\ z e. ( CC \ { 0 } ) ) /\ w = z ) -> ( 1 / w ) = ( 1 / z ) ) |
18 |
|
simpr |
|- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> z e. ( CC \ { 0 } ) ) |
19 |
18
|
eldifad |
|- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> z e. CC ) |
20 |
|
eldifsni |
|- ( z e. ( CC \ { 0 } ) -> z =/= 0 ) |
21 |
20
|
adantl |
|- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> z =/= 0 ) |
22 |
19 21
|
reccld |
|- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( 1 / z ) e. CC ) |
23 |
15 17 18 22
|
fvmptd |
|- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) = ( 1 / z ) ) |
24 |
23 22
|
eqeltrd |
|- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) e. CC ) |
25 |
|
eqid |
|- ( if ( 1 <_ ( ( abs ` A ) x. x ) , 1 , ( ( abs ` A ) x. x ) ) x. ( ( abs ` A ) / 2 ) ) = ( if ( 1 <_ ( ( abs ` A ) x. x ) , 1 , ( ( abs ` A ) x. x ) ) x. ( ( abs ` A ) / 2 ) ) |
26 |
25
|
reccn2 |
|- ( ( A e. ( CC \ { 0 } ) /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) |
27 |
14 26
|
sylan |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) |
28 |
|
eqidd |
|- ( z e. ( CC \ { 0 } ) -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
29 |
|
simpr |
|- ( ( z e. ( CC \ { 0 } ) /\ w = z ) -> w = z ) |
30 |
29
|
oveq2d |
|- ( ( z e. ( CC \ { 0 } ) /\ w = z ) -> ( 1 / w ) = ( 1 / z ) ) |
31 |
|
id |
|- ( z e. ( CC \ { 0 } ) -> z e. ( CC \ { 0 } ) ) |
32 |
|
eldifi |
|- ( z e. ( CC \ { 0 } ) -> z e. CC ) |
33 |
32 20
|
reccld |
|- ( z e. ( CC \ { 0 } ) -> ( 1 / z ) e. CC ) |
34 |
28 30 31 33
|
fvmptd |
|- ( z e. ( CC \ { 0 } ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) = ( 1 / z ) ) |
35 |
34
|
ad2antlr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) = ( 1 / z ) ) |
36 |
|
eqidd |
|- ( ph -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
37 |
|
simpr |
|- ( ( ph /\ w = A ) -> w = A ) |
38 |
37
|
oveq2d |
|- ( ( ph /\ w = A ) -> ( 1 / w ) = ( 1 / A ) ) |
39 |
9 4
|
reccld |
|- ( ph -> ( 1 / A ) e. CC ) |
40 |
36 38 14 39
|
fvmptd |
|- ( ph -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) = ( 1 / A ) ) |
41 |
40
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) = ( 1 / A ) ) |
42 |
35 41
|
oveq12d |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) = ( ( 1 / z ) - ( 1 / A ) ) ) |
43 |
42
|
fveq2d |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) = ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) ) |
44 |
31
|
ad2antlr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> z e. ( CC \ { 0 } ) ) |
45 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( z - A ) ) < y ) |
46 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) |
47 |
44 45 46
|
mp2d |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) |
48 |
43 47
|
eqbrtrd |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) |
49 |
48
|
exp41 |
|- ( ( ph /\ x e. RR+ ) -> ( ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) -> ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) ) ) |
50 |
49
|
ralimdv2 |
|- ( ( ph /\ x e. RR+ ) -> ( A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) -> A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) ) |
51 |
50
|
reximdv |
|- ( ( ph /\ x e. RR+ ) -> ( E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) ) |
52 |
27 51
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) |
53 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
54 |
|
oveq2 |
|- ( w = ( G ` k ) -> ( 1 / w ) = ( 1 / ( G ` k ) ) ) |
55 |
54
|
adantl |
|- ( ( ( ph /\ k e. Z ) /\ w = ( G ` k ) ) -> ( 1 / w ) = ( 1 / ( G ` k ) ) ) |
56 |
5
|
eldifad |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
57 |
|
eldifsni |
|- ( ( G ` k ) e. ( CC \ { 0 } ) -> ( G ` k ) =/= 0 ) |
58 |
5 57
|
syl |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) =/= 0 ) |
59 |
56 58
|
reccld |
|- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) e. CC ) |
60 |
53 55 5 59
|
fvmptd |
|- ( ( ph /\ k e. Z ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` ( G ` k ) ) = ( 1 / ( G ` k ) ) ) |
61 |
6 60
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` ( G ` k ) ) ) |
62 |
1 2 14 24 3 7 52 5 61
|
climcn1 |
|- ( ph -> H ~~> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) |
63 |
62 40
|
breqtrd |
|- ( ph -> H ~~> ( 1 / A ) ) |