Step |
Hyp |
Ref |
Expression |
1 |
|
climrecf.1 |
|- F/ k ph |
2 |
|
climrecf.2 |
|- F/_ k G |
3 |
|
climrecf.3 |
|- F/_ k H |
4 |
|
climrecf.4 |
|- Z = ( ZZ>= ` M ) |
5 |
|
climrecf.5 |
|- ( ph -> M e. ZZ ) |
6 |
|
climrecf.6 |
|- ( ph -> G ~~> A ) |
7 |
|
climrecf.7 |
|- ( ph -> A =/= 0 ) |
8 |
|
climrecf.8 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
9 |
|
climrecf.9 |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) |
10 |
|
climrecf.10 |
|- ( ph -> H e. W ) |
11 |
|
nfv |
|- F/ k j e. Z |
12 |
1 11
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
13 |
|
nfcv |
|- F/_ k j |
14 |
2 13
|
nffv |
|- F/_ k ( G ` j ) |
15 |
14
|
nfel1 |
|- F/ k ( G ` j ) e. ( CC \ { 0 } ) |
16 |
12 15
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( G ` j ) e. ( CC \ { 0 } ) ) |
17 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
18 |
17
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
19 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
20 |
19
|
eleq1d |
|- ( k = j -> ( ( G ` k ) e. ( CC \ { 0 } ) <-> ( G ` j ) e. ( CC \ { 0 } ) ) ) |
21 |
18 20
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) <-> ( ( ph /\ j e. Z ) -> ( G ` j ) e. ( CC \ { 0 } ) ) ) ) |
22 |
16 21 8
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( G ` j ) e. ( CC \ { 0 } ) ) |
23 |
3 13
|
nffv |
|- F/_ k ( H ` j ) |
24 |
|
nfcv |
|- F/_ k 1 |
25 |
|
nfcv |
|- F/_ k / |
26 |
24 25 14
|
nfov |
|- F/_ k ( 1 / ( G ` j ) ) |
27 |
23 26
|
nfeq |
|- F/ k ( H ` j ) = ( 1 / ( G ` j ) ) |
28 |
12 27
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( 1 / ( G ` j ) ) ) |
29 |
|
fveq2 |
|- ( k = j -> ( H ` k ) = ( H ` j ) ) |
30 |
19
|
oveq2d |
|- ( k = j -> ( 1 / ( G ` k ) ) = ( 1 / ( G ` j ) ) ) |
31 |
29 30
|
eqeq12d |
|- ( k = j -> ( ( H ` k ) = ( 1 / ( G ` k ) ) <-> ( H ` j ) = ( 1 / ( G ` j ) ) ) ) |
32 |
18 31
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( 1 / ( G ` j ) ) ) ) ) |
33 |
28 32 9
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( 1 / ( G ` j ) ) ) |
34 |
4 5 6 7 22 33 10
|
climrec |
|- ( ph -> H ~~> ( 1 / A ) ) |