Step |
Hyp |
Ref |
Expression |
1 |
|
climreclf.k |
|- F/ k ph |
2 |
|
climreclf.f |
|- F/_ k F |
3 |
|
climreclf.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climreclf.m |
|- ( ph -> M e. ZZ ) |
5 |
|
climreclf.a |
|- ( ph -> F ~~> A ) |
6 |
|
climreclf.r |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
7 |
|
nfv |
|- F/ k j e. Z |
8 |
1 7
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
9 |
|
nfcv |
|- F/_ k j |
10 |
2 9
|
nffv |
|- F/_ k ( F ` j ) |
11 |
|
nfcv |
|- F/_ k RR |
12 |
10 11
|
nfel |
|- F/ k ( F ` j ) e. RR |
13 |
8 12
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
14 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
15 |
14
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
16 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
17 |
16
|
eleq1d |
|- ( k = j -> ( ( F ` k ) e. RR <-> ( F ` j ) e. RR ) ) |
18 |
15 17
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) ) ) |
19 |
13 18 6
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
20 |
3 4 5 19
|
climrecl |
|- ( ph -> A e. RR ) |