| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climreeq.1 |  |-  R = ( ~~>t ` ( topGen ` ran (,) ) ) | 
						
							| 2 |  | climreeq.2 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | climreeq.3 |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | climreeq.4 |  |-  ( ph -> F : Z --> RR ) | 
						
							| 5 | 1 | breqi |  |-  ( F R A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) | 
						
							| 6 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 7 | 6 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 8 | 4 7 | fssd |  |-  ( ph -> F : Z --> CC ) | 
						
							| 9 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 10 | 9 2 | lmclimf |  |-  ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) ) | 
						
							| 11 | 3 8 10 | syl2anc |  |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) ) | 
						
							| 12 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 13 |  | reex |  |-  RR e. _V | 
						
							| 14 | 13 | a1i |  |-  ( ( ph /\ A e. RR ) -> RR e. _V ) | 
						
							| 15 | 9 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 16 | 15 | a1i |  |-  ( ( ph /\ A e. RR ) -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ A e. RR ) -> A e. RR ) | 
						
							| 18 | 3 | adantr |  |-  ( ( ph /\ A e. RR ) -> M e. ZZ ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ A e. RR ) -> F : Z --> RR ) | 
						
							| 20 | 12 2 14 16 17 18 19 | lmss |  |-  ( ( ph /\ A e. RR ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) | 
						
							| 21 | 20 | pm5.32da |  |-  ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) ) | 
						
							| 22 |  | simpr |  |-  ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) | 
						
							| 23 | 3 | adantr |  |-  ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> M e. ZZ ) | 
						
							| 24 | 11 | biimpa |  |-  ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ~~> A ) | 
						
							| 25 | 4 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. RR ) | 
						
							| 26 | 25 | adantlr |  |-  ( ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) /\ n e. Z ) -> ( F ` n ) e. RR ) | 
						
							| 27 | 2 23 24 26 | climrecl |  |-  ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> A e. RR ) | 
						
							| 28 | 27 | ex |  |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> A e. RR ) ) | 
						
							| 29 | 28 | ancrd |  |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) ) ) | 
						
							| 30 | 22 29 | impbid2 |  |-  ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) ) | 
						
							| 31 |  | simpr |  |-  ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) | 
						
							| 32 |  | retopon |  |-  ( topGen ` ran (,) ) e. ( TopOn ` RR ) | 
						
							| 33 | 32 | a1i |  |-  ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) | 
						
							| 35 |  | lmcl |  |-  ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR ) | 
						
							| 36 | 33 34 35 | syl2anc |  |-  ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR ) | 
						
							| 37 | 36 | ex |  |-  ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> A e. RR ) ) | 
						
							| 38 | 37 | ancrd |  |-  ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) ) | 
						
							| 39 | 31 38 | impbid2 |  |-  ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) | 
						
							| 40 | 21 30 39 | 3bitr3d |  |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) | 
						
							| 41 | 11 40 | bitr3d |  |-  ( ph -> ( F ~~> A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) | 
						
							| 42 | 5 41 | bitr4id |  |-  ( ph -> ( F R A <-> F ~~> A ) ) |