Metamath Proof Explorer


Theorem climreeq

Description: If F is a real function, then F converges to A with respect to the standard topology on the reals if and only if it converges to A with respect to the standard topology on complex numbers. In the theorem, R is defined to be convergence w.r.t. the standard topology on the reals and then F R A represents the statement " F converges to A , with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that A is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017)

Ref Expression
Hypotheses climreeq.1
|- R = ( ~~>t ` ( topGen ` ran (,) ) )
climreeq.2
|- Z = ( ZZ>= ` M )
climreeq.3
|- ( ph -> M e. ZZ )
climreeq.4
|- ( ph -> F : Z --> RR )
Assertion climreeq
|- ( ph -> ( F R A <-> F ~~> A ) )

Proof

Step Hyp Ref Expression
1 climreeq.1
 |-  R = ( ~~>t ` ( topGen ` ran (,) ) )
2 climreeq.2
 |-  Z = ( ZZ>= ` M )
3 climreeq.3
 |-  ( ph -> M e. ZZ )
4 climreeq.4
 |-  ( ph -> F : Z --> RR )
5 1 breqi
 |-  ( F R A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A )
6 ax-resscn
 |-  RR C_ CC
7 6 a1i
 |-  ( ph -> RR C_ CC )
8 4 7 fssd
 |-  ( ph -> F : Z --> CC )
9 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
10 9 2 lmclimf
 |-  ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) )
11 3 8 10 syl2anc
 |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) )
12 9 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
13 reex
 |-  RR e. _V
14 13 a1i
 |-  ( ( ph /\ A e. RR ) -> RR e. _V )
15 9 cnfldtop
 |-  ( TopOpen ` CCfld ) e. Top
16 15 a1i
 |-  ( ( ph /\ A e. RR ) -> ( TopOpen ` CCfld ) e. Top )
17 simpr
 |-  ( ( ph /\ A e. RR ) -> A e. RR )
18 3 adantr
 |-  ( ( ph /\ A e. RR ) -> M e. ZZ )
19 4 adantr
 |-  ( ( ph /\ A e. RR ) -> F : Z --> RR )
20 12 2 14 16 17 18 19 lmss
 |-  ( ( ph /\ A e. RR ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) )
21 20 pm5.32da
 |-  ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) )
22 simpr
 |-  ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ( ~~>t ` ( TopOpen ` CCfld ) ) A )
23 3 adantr
 |-  ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> M e. ZZ )
24 11 biimpa
 |-  ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ~~> A )
25 4 ffvelrnda
 |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. RR )
26 25 adantlr
 |-  ( ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) /\ n e. Z ) -> ( F ` n ) e. RR )
27 2 23 24 26 climrecl
 |-  ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> A e. RR )
28 27 ex
 |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> A e. RR ) )
29 28 ancrd
 |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) ) )
30 22 29 impbid2
 |-  ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) )
31 simpr
 |-  ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A )
32 retopon
 |-  ( topGen ` ran (,) ) e. ( TopOn ` RR )
33 32 a1i
 |-  ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) )
34 simpr
 |-  ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A )
35 lmcl
 |-  ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR )
36 33 34 35 syl2anc
 |-  ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR )
37 36 ex
 |-  ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> A e. RR ) )
38 37 ancrd
 |-  ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) )
39 31 38 impbid2
 |-  ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) )
40 21 30 39 3bitr3d
 |-  ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) )
41 11 40 bitr3d
 |-  ( ph -> ( F ~~> A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) )
42 5 41 bitr4id
 |-  ( ph -> ( F R A <-> F ~~> A ) )