Step |
Hyp |
Ref |
Expression |
1 |
|
climreeq.1 |
|- R = ( ~~>t ` ( topGen ` ran (,) ) ) |
2 |
|
climreeq.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
climreeq.3 |
|- ( ph -> M e. ZZ ) |
4 |
|
climreeq.4 |
|- ( ph -> F : Z --> RR ) |
5 |
1
|
breqi |
|- ( F R A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) |
6 |
|
ax-resscn |
|- RR C_ CC |
7 |
6
|
a1i |
|- ( ph -> RR C_ CC ) |
8 |
4 7
|
fssd |
|- ( ph -> F : Z --> CC ) |
9 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
10 |
9 2
|
lmclimf |
|- ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) ) |
11 |
3 8 10
|
syl2anc |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) ) |
12 |
9
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
13 |
|
reex |
|- RR e. _V |
14 |
13
|
a1i |
|- ( ( ph /\ A e. RR ) -> RR e. _V ) |
15 |
9
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
16 |
15
|
a1i |
|- ( ( ph /\ A e. RR ) -> ( TopOpen ` CCfld ) e. Top ) |
17 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
18 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> M e. ZZ ) |
19 |
4
|
adantr |
|- ( ( ph /\ A e. RR ) -> F : Z --> RR ) |
20 |
12 2 14 16 17 18 19
|
lmss |
|- ( ( ph /\ A e. RR ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
21 |
20
|
pm5.32da |
|- ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) ) |
22 |
|
simpr |
|- ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) |
23 |
3
|
adantr |
|- ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> M e. ZZ ) |
24 |
11
|
biimpa |
|- ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ~~> A ) |
25 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. RR ) |
26 |
25
|
adantlr |
|- ( ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) /\ n e. Z ) -> ( F ` n ) e. RR ) |
27 |
2 23 24 26
|
climrecl |
|- ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> A e. RR ) |
28 |
27
|
ex |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> A e. RR ) ) |
29 |
28
|
ancrd |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) ) ) |
30 |
22 29
|
impbid2 |
|- ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) ) |
31 |
|
simpr |
|- ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) |
32 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
33 |
32
|
a1i |
|- ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
34 |
|
simpr |
|- ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) |
35 |
|
lmcl |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR ) |
36 |
33 34 35
|
syl2anc |
|- ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR ) |
37 |
36
|
ex |
|- ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> A e. RR ) ) |
38 |
37
|
ancrd |
|- ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) ) |
39 |
31 38
|
impbid2 |
|- ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
40 |
21 30 39
|
3bitr3d |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
41 |
11 40
|
bitr3d |
|- ( ph -> ( F ~~> A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
42 |
5 41
|
bitr4id |
|- ( ph -> ( F R A <-> F ~~> A ) ) |