Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climrel | |- Rel ~~> |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clim | |- ~~> = { <. f , y >. | ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) } |
|
| 2 | 1 | relopabiv | |- Rel ~~> |