| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 2 |
|
resexg |
|- ( F e. V -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
| 3 |
2
|
adantl |
|- ( ( M e. ZZ /\ F e. V ) -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
| 4 |
|
simpr |
|- ( ( M e. ZZ /\ F e. V ) -> F e. V ) |
| 5 |
|
simpl |
|- ( ( M e. ZZ /\ F e. V ) -> M e. ZZ ) |
| 6 |
|
fvres |
|- ( k e. ( ZZ>= ` M ) -> ( ( F |` ( ZZ>= ` M ) ) ` k ) = ( F ` k ) ) |
| 7 |
6
|
adantl |
|- ( ( ( M e. ZZ /\ F e. V ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F |` ( ZZ>= ` M ) ) ` k ) = ( F ` k ) ) |
| 8 |
1 3 4 5 7
|
climeq |
|- ( ( M e. ZZ /\ F e. V ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> A <-> F ~~> A ) ) |