Step |
Hyp |
Ref |
Expression |
1 |
|
climrescn.m |
|- ( ph -> M e. ZZ ) |
2 |
|
climrescn.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
climrescn.f |
|- ( ph -> F Fn Z ) |
4 |
|
climrescn.c |
|- ( ph -> F e. dom ~~> ) |
5 |
|
nfv |
|- F/ k ( ph /\ i e. Z ) |
6 |
|
nfra1 |
|- F/ k A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) |
7 |
5 6
|
nfan |
|- F/ k ( ( ph /\ i e. Z ) /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) |
8 |
2
|
uztrn2 |
|- ( ( i e. Z /\ k e. ( ZZ>= ` i ) ) -> k e. Z ) |
9 |
8
|
adantll |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( ZZ>= ` i ) ) -> k e. Z ) |
10 |
3
|
fndmd |
|- ( ph -> dom F = Z ) |
11 |
10
|
ad2antrr |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( ZZ>= ` i ) ) -> dom F = Z ) |
12 |
9 11
|
eleqtrrd |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( ZZ>= ` i ) ) -> k e. dom F ) |
13 |
12
|
adantlr |
|- ( ( ( ( ph /\ i e. Z ) /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) /\ k e. ( ZZ>= ` i ) ) -> k e. dom F ) |
14 |
|
rspa |
|- ( ( A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) /\ k e. ( ZZ>= ` i ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) |
15 |
14
|
adantll |
|- ( ( ( i e. Z /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) /\ k e. ( ZZ>= ` i ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) |
16 |
15
|
simpld |
|- ( ( ( i e. Z /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) /\ k e. ( ZZ>= ` i ) ) -> ( F ` k ) e. CC ) |
17 |
16
|
adantlll |
|- ( ( ( ( ph /\ i e. Z ) /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) /\ k e. ( ZZ>= ` i ) ) -> ( F ` k ) e. CC ) |
18 |
13 17
|
jca |
|- ( ( ( ( ph /\ i e. Z ) /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) /\ k e. ( ZZ>= ` i ) ) -> ( k e. dom F /\ ( F ` k ) e. CC ) ) |
19 |
7 18
|
ralrimia |
|- ( ( ( ph /\ i e. Z ) /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) -> A. k e. ( ZZ>= ` i ) ( k e. dom F /\ ( F ` k ) e. CC ) ) |
20 |
|
fnfun |
|- ( F Fn Z -> Fun F ) |
21 |
|
ffvresb |
|- ( Fun F -> ( ( F |` ( ZZ>= ` i ) ) : ( ZZ>= ` i ) --> CC <-> A. k e. ( ZZ>= ` i ) ( k e. dom F /\ ( F ` k ) e. CC ) ) ) |
22 |
3 20 21
|
3syl |
|- ( ph -> ( ( F |` ( ZZ>= ` i ) ) : ( ZZ>= ` i ) --> CC <-> A. k e. ( ZZ>= ` i ) ( k e. dom F /\ ( F ` k ) e. CC ) ) ) |
23 |
22
|
ad2antrr |
|- ( ( ( ph /\ i e. Z ) /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) -> ( ( F |` ( ZZ>= ` i ) ) : ( ZZ>= ` i ) --> CC <-> A. k e. ( ZZ>= ` i ) ( k e. dom F /\ ( F ` k ) e. CC ) ) ) |
24 |
19 23
|
mpbird |
|- ( ( ( ph /\ i e. Z ) /\ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) -> ( F |` ( ZZ>= ` i ) ) : ( ZZ>= ` i ) --> CC ) |
25 |
|
breq2 |
|- ( x = 1 -> ( ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) |
26 |
25
|
anbi2d |
|- ( x = 1 -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) ) |
27 |
26
|
rexralbidv |
|- ( x = 1 -> ( E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < x ) <-> E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) ) |
28 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
29 |
4 28
|
sylib |
|- ( ph -> F ~~> ( ~~> ` F ) ) |
30 |
|
eqidd |
|- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = ( F ` k ) ) |
31 |
4 30
|
clim |
|- ( ph -> ( F ~~> ( ~~> ` F ) <-> ( ( ~~> ` F ) e. CC /\ A. x e. RR+ E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < x ) ) ) ) |
32 |
29 31
|
mpbid |
|- ( ph -> ( ( ~~> ` F ) e. CC /\ A. x e. RR+ E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < x ) ) ) |
33 |
32
|
simprd |
|- ( ph -> A. x e. RR+ E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < x ) ) |
34 |
|
1rp |
|- 1 e. RR+ |
35 |
34
|
a1i |
|- ( ph -> 1 e. RR+ ) |
36 |
27 33 35
|
rspcdva |
|- ( ph -> E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) |
37 |
2
|
rexuz3 |
|- ( M e. ZZ -> ( E. i e. Z A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) <-> E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) ) |
38 |
1 37
|
syl |
|- ( ph -> ( E. i e. Z A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) <-> E. i e. ZZ A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) ) |
39 |
36 38
|
mpbird |
|- ( ph -> E. i e. Z A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( ~~> ` F ) ) ) < 1 ) ) |
40 |
24 39
|
reximddv3 |
|- ( ph -> E. i e. Z ( F |` ( ZZ>= ` i ) ) : ( ZZ>= ` i ) --> CC ) |
41 |
|
fveq2 |
|- ( j = i -> ( ZZ>= ` j ) = ( ZZ>= ` i ) ) |
42 |
41
|
reseq2d |
|- ( j = i -> ( F |` ( ZZ>= ` j ) ) = ( F |` ( ZZ>= ` i ) ) ) |
43 |
42 41
|
feq12d |
|- ( j = i -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC <-> ( F |` ( ZZ>= ` i ) ) : ( ZZ>= ` i ) --> CC ) ) |
44 |
43
|
cbvrexvw |
|- ( E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC <-> E. i e. Z ( F |` ( ZZ>= ` i ) ) : ( ZZ>= ` i ) --> CC ) |
45 |
40 44
|
sylibr |
|- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) |