Metamath Proof Explorer


Theorem climresmpt

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climresmpt.z
|- Z = ( ZZ>= ` M )
climresmpt.f
|- F = ( x e. Z |-> A )
climresmpt.n
|- ( ph -> N e. Z )
climresmpt.g
|- G = ( x e. ( ZZ>= ` N ) |-> A )
Assertion climresmpt
|- ( ph -> ( G ~~> B <-> F ~~> B ) )

Proof

Step Hyp Ref Expression
1 climresmpt.z
 |-  Z = ( ZZ>= ` M )
2 climresmpt.f
 |-  F = ( x e. Z |-> A )
3 climresmpt.n
 |-  ( ph -> N e. Z )
4 climresmpt.g
 |-  G = ( x e. ( ZZ>= ` N ) |-> A )
5 2 reseq1i
 |-  ( F |` ( ZZ>= ` N ) ) = ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) )
6 5 a1i
 |-  ( ph -> ( F |` ( ZZ>= ` N ) ) = ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) ) )
7 3 1 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` M ) )
8 uzss
 |-  ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) )
9 7 8 syl
 |-  ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) )
10 9 1 sseqtrrdi
 |-  ( ph -> ( ZZ>= ` N ) C_ Z )
11 resmpt
 |-  ( ( ZZ>= ` N ) C_ Z -> ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) ) = ( x e. ( ZZ>= ` N ) |-> A ) )
12 10 11 syl
 |-  ( ph -> ( ( x e. Z |-> A ) |` ( ZZ>= ` N ) ) = ( x e. ( ZZ>= ` N ) |-> A ) )
13 4 eqcomi
 |-  ( x e. ( ZZ>= ` N ) |-> A ) = G
14 13 a1i
 |-  ( ph -> ( x e. ( ZZ>= ` N ) |-> A ) = G )
15 6 12 14 3eqtrrd
 |-  ( ph -> G = ( F |` ( ZZ>= ` N ) ) )
16 15 breq1d
 |-  ( ph -> ( G ~~> B <-> ( F |` ( ZZ>= ` N ) ) ~~> B ) )
17 eluzelz
 |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ )
18 7 17 syl
 |-  ( ph -> N e. ZZ )
19 1 fvexi
 |-  Z e. _V
20 19 mptex
 |-  ( x e. Z |-> A ) e. _V
21 20 a1i
 |-  ( ph -> ( x e. Z |-> A ) e. _V )
22 2 21 eqeltrid
 |-  ( ph -> F e. _V )
23 climres
 |-  ( ( N e. ZZ /\ F e. _V ) -> ( ( F |` ( ZZ>= ` N ) ) ~~> B <-> F ~~> B ) )
24 18 22 23 syl2anc
 |-  ( ph -> ( ( F |` ( ZZ>= ` N ) ) ~~> B <-> F ~~> B ) )
25 16 24 bitrd
 |-  ( ph -> ( G ~~> B <-> F ~~> B ) )