Step |
Hyp |
Ref |
Expression |
1 |
|
climshft2.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climshft2.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climshft2.3 |
|- ( ph -> K e. ZZ ) |
4 |
|
climshft2.5 |
|- ( ph -> F e. W ) |
5 |
|
climshft2.6 |
|- ( ph -> G e. X ) |
6 |
|
climshft2.7 |
|- ( ( ph /\ k e. Z ) -> ( G ` ( k + K ) ) = ( F ` k ) ) |
7 |
|
ovexd |
|- ( ph -> ( G shift -u K ) e. _V ) |
8 |
3
|
zcnd |
|- ( ph -> K e. CC ) |
9 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
10 |
9 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
11 |
10
|
zcnd |
|- ( k e. Z -> k e. CC ) |
12 |
|
fvex |
|- ( _I ` G ) e. _V |
13 |
12
|
shftval4 |
|- ( ( K e. CC /\ k e. CC ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( _I ` G ) ` ( K + k ) ) ) |
14 |
8 11 13
|
syl2an |
|- ( ( ph /\ k e. Z ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( _I ` G ) ` ( K + k ) ) ) |
15 |
|
fvi |
|- ( G e. X -> ( _I ` G ) = G ) |
16 |
5 15
|
syl |
|- ( ph -> ( _I ` G ) = G ) |
17 |
16
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( _I ` G ) = G ) |
18 |
17
|
oveq1d |
|- ( ( ph /\ k e. Z ) -> ( ( _I ` G ) shift -u K ) = ( G shift -u K ) ) |
19 |
18
|
fveq1d |
|- ( ( ph /\ k e. Z ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( G shift -u K ) ` k ) ) |
20 |
|
addcom |
|- ( ( K e. CC /\ k e. CC ) -> ( K + k ) = ( k + K ) ) |
21 |
8 11 20
|
syl2an |
|- ( ( ph /\ k e. Z ) -> ( K + k ) = ( k + K ) ) |
22 |
17 21
|
fveq12d |
|- ( ( ph /\ k e. Z ) -> ( ( _I ` G ) ` ( K + k ) ) = ( G ` ( k + K ) ) ) |
23 |
14 19 22
|
3eqtr3d |
|- ( ( ph /\ k e. Z ) -> ( ( G shift -u K ) ` k ) = ( G ` ( k + K ) ) ) |
24 |
23 6
|
eqtrd |
|- ( ( ph /\ k e. Z ) -> ( ( G shift -u K ) ` k ) = ( F ` k ) ) |
25 |
1 7 4 2 24
|
climeq |
|- ( ph -> ( ( G shift -u K ) ~~> A <-> F ~~> A ) ) |
26 |
3
|
znegcld |
|- ( ph -> -u K e. ZZ ) |
27 |
|
climshft |
|- ( ( -u K e. ZZ /\ G e. X ) -> ( ( G shift -u K ) ~~> A <-> G ~~> A ) ) |
28 |
26 5 27
|
syl2anc |
|- ( ph -> ( ( G shift -u K ) ~~> A <-> G ~~> A ) ) |
29 |
25 28
|
bitr3d |
|- ( ph -> ( F ~~> A <-> G ~~> A ) ) |