| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climadd.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | climadd.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | climadd.4 |  |-  ( ph -> F ~~> A ) | 
						
							| 4 |  | climsqz.5 |  |-  ( ph -> G e. W ) | 
						
							| 5 |  | climsqz.6 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) | 
						
							| 6 |  | climsqz.7 |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) | 
						
							| 7 |  | climsqz.8 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) | 
						
							| 8 |  | climsqz.9 |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) <_ A ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> M e. ZZ ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 11 |  | eqidd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> F ~~> A ) | 
						
							| 13 | 1 9 10 11 12 | climi2 |  |-  ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) | 
						
							| 14 | 1 | uztrn2 |  |-  ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 15 | 1 2 3 5 | climrecl |  |-  ( ph -> A e. RR ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ k e. Z ) -> A e. RR ) | 
						
							| 17 | 5 6 16 7 | lesub2dd |  |-  ( ( ph /\ k e. Z ) -> ( A - ( G ` k ) ) <_ ( A - ( F ` k ) ) ) | 
						
							| 18 | 6 16 8 | abssuble0d |  |-  ( ( ph /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) = ( A - ( G ` k ) ) ) | 
						
							| 19 | 5 6 16 7 8 | letrd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) <_ A ) | 
						
							| 20 | 5 16 19 | abssuble0d |  |-  ( ( ph /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) = ( A - ( F ` k ) ) ) | 
						
							| 21 | 17 18 20 | 3brtr4d |  |-  ( ( ph /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) ) | 
						
							| 22 | 21 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) ) | 
						
							| 23 | 6 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( G ` k ) e. RR ) | 
						
							| 24 | 15 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> A e. RR ) | 
						
							| 25 | 23 24 | resubcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( G ` k ) - A ) e. RR ) | 
						
							| 26 | 25 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( G ` k ) - A ) e. CC ) | 
						
							| 27 | 26 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) e. RR ) | 
						
							| 28 | 5 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( F ` k ) e. RR ) | 
						
							| 29 | 28 24 | resubcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) - A ) e. RR ) | 
						
							| 30 | 29 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) - A ) e. CC ) | 
						
							| 31 | 30 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) e. RR ) | 
						
							| 32 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 33 | 32 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> x e. RR ) | 
						
							| 34 |  | lelttr |  |-  ( ( ( abs ` ( ( G ` k ) - A ) ) e. RR /\ ( abs ` ( ( F ` k ) - A ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < x ) -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 35 | 27 31 33 34 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < x ) -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 36 | 22 35 | mpand |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 37 | 14 36 | sylan2 |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 38 | 37 | anassrs |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 39 | 38 | ralimdva |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 40 | 39 | reximdva |  |-  ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 41 | 13 40 | mpd |  |-  ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) | 
						
							| 42 | 41 | ralrimiva |  |-  ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) | 
						
							| 43 |  | eqidd |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) | 
						
							| 44 | 15 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 45 | 6 | recnd |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) | 
						
							| 46 | 1 2 4 43 44 45 | clim2c |  |-  ( ph -> ( G ~~> A <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) | 
						
							| 47 | 42 46 | mpbird |  |-  ( ph -> G ~~> A ) |