Step |
Hyp |
Ref |
Expression |
1 |
|
climadd.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climadd.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climadd.4 |
|- ( ph -> F ~~> A ) |
4 |
|
climadd.6 |
|- ( ph -> H e. X ) |
5 |
|
climadd.7 |
|- ( ph -> G ~~> B ) |
6 |
|
climadd.8 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
7 |
|
climadd.9 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
8 |
|
climsub.h |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
9 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
10 |
3 9
|
syl |
|- ( ph -> A e. CC ) |
11 |
|
climcl |
|- ( G ~~> B -> B e. CC ) |
12 |
5 11
|
syl |
|- ( ph -> B e. CC ) |
13 |
|
subcl |
|- ( ( u e. CC /\ v e. CC ) -> ( u - v ) e. CC ) |
14 |
13
|
adantl |
|- ( ( ph /\ ( u e. CC /\ v e. CC ) ) -> ( u - v ) e. CC ) |
15 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
16 |
10
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> A e. CC ) |
17 |
12
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> B e. CC ) |
18 |
|
subcn2 |
|- ( ( x e. RR+ /\ A e. CC /\ B e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u - v ) - ( A - B ) ) ) < x ) ) |
19 |
15 16 17 18
|
syl3anc |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u - v ) - ( A - B ) ) ) < x ) ) |
20 |
1 2 10 12 14 3 5 4 19 6 7 8
|
climcn2 |
|- ( ph -> H ~~> ( A - B ) ) |