| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climadd.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | climadd.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | climadd.4 |  |-  ( ph -> F ~~> A ) | 
						
							| 4 |  | climaddc1.5 |  |-  ( ph -> C e. CC ) | 
						
							| 5 |  | climaddc1.6 |  |-  ( ph -> G e. W ) | 
						
							| 6 |  | climaddc1.7 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 7 |  | climsubc1.h |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( ( F ` k ) - C ) ) | 
						
							| 8 |  | 0z |  |-  0 e. ZZ | 
						
							| 9 |  | uzssz |  |-  ( ZZ>= ` 0 ) C_ ZZ | 
						
							| 10 |  | zex |  |-  ZZ e. _V | 
						
							| 11 | 9 10 | climconst2 |  |-  ( ( C e. CC /\ 0 e. ZZ ) -> ( ZZ X. { C } ) ~~> C ) | 
						
							| 12 | 4 8 11 | sylancl |  |-  ( ph -> ( ZZ X. { C } ) ~~> C ) | 
						
							| 13 |  | eluzelz |  |-  ( k e. ( ZZ>= ` M ) -> k e. ZZ ) | 
						
							| 14 | 13 1 | eleq2s |  |-  ( k e. Z -> k e. ZZ ) | 
						
							| 15 |  | fvconst2g |  |-  ( ( C e. CC /\ k e. ZZ ) -> ( ( ZZ X. { C } ) ` k ) = C ) | 
						
							| 16 | 4 14 15 | syl2an |  |-  ( ( ph /\ k e. Z ) -> ( ( ZZ X. { C } ) ` k ) = C ) | 
						
							| 17 | 4 | adantr |  |-  ( ( ph /\ k e. Z ) -> C e. CC ) | 
						
							| 18 | 16 17 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( ( ZZ X. { C } ) ` k ) e. CC ) | 
						
							| 19 | 16 | oveq2d |  |-  ( ( ph /\ k e. Z ) -> ( ( F ` k ) - ( ( ZZ X. { C } ) ` k ) ) = ( ( F ` k ) - C ) ) | 
						
							| 20 | 7 19 | eqtr4d |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( ( F ` k ) - ( ( ZZ X. { C } ) ` k ) ) ) | 
						
							| 21 | 1 2 3 5 12 6 18 20 | climsub |  |-  ( ph -> G ~~> ( A - C ) ) |