Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climsubc1mpt.k | |- F/ k ph  | 
					|
| climsubc1mpt.z | |- Z = ( ZZ>= ` M )  | 
					||
| climsubc1mpt.m | |- ( ph -> M e. ZZ )  | 
					||
| climsubc1mpt.b | |- ( ph -> A e. CC )  | 
					||
| climsubc1mpt.a | |- ( ( ph /\ k e. Z ) -> B e. CC )  | 
					||
| climsubc1mpt.c | |- ( ph -> ( k e. Z |-> B ) ~~> C )  | 
					||
| Assertion | climsubc1mpt | |- ( ph -> ( k e. Z |-> ( A - B ) ) ~~> ( A - C ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | climsubc1mpt.k | |- F/ k ph  | 
						|
| 2 | climsubc1mpt.z | |- Z = ( ZZ>= ` M )  | 
						|
| 3 | climsubc1mpt.m | |- ( ph -> M e. ZZ )  | 
						|
| 4 | climsubc1mpt.b | |- ( ph -> A e. CC )  | 
						|
| 5 | climsubc1mpt.a | |- ( ( ph /\ k e. Z ) -> B e. CC )  | 
						|
| 6 | climsubc1mpt.c | |- ( ph -> ( k e. Z |-> B ) ~~> C )  | 
						|
| 7 | 4 | adantr | |- ( ( ph /\ k e. Z ) -> A e. CC )  | 
						
| 8 | 3 2 4 | climconstmpt | |- ( ph -> ( k e. Z |-> A ) ~~> A )  | 
						
| 9 | 1 2 3 7 5 8 6 | climsubmpt | |- ( ph -> ( k e. Z |-> ( A - B ) ) ~~> ( A - C ) )  |