Metamath Proof Explorer


Theorem climsubc1mpt

Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climsubc1mpt.k
|- F/ k ph
climsubc1mpt.z
|- Z = ( ZZ>= ` M )
climsubc1mpt.m
|- ( ph -> M e. ZZ )
climsubc1mpt.b
|- ( ph -> A e. CC )
climsubc1mpt.a
|- ( ( ph /\ k e. Z ) -> B e. CC )
climsubc1mpt.c
|- ( ph -> ( k e. Z |-> B ) ~~> C )
Assertion climsubc1mpt
|- ( ph -> ( k e. Z |-> ( A - B ) ) ~~> ( A - C ) )

Proof

Step Hyp Ref Expression
1 climsubc1mpt.k
 |-  F/ k ph
2 climsubc1mpt.z
 |-  Z = ( ZZ>= ` M )
3 climsubc1mpt.m
 |-  ( ph -> M e. ZZ )
4 climsubc1mpt.b
 |-  ( ph -> A e. CC )
5 climsubc1mpt.a
 |-  ( ( ph /\ k e. Z ) -> B e. CC )
6 climsubc1mpt.c
 |-  ( ph -> ( k e. Z |-> B ) ~~> C )
7 4 adantr
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
8 3 2 4 climconstmpt
 |-  ( ph -> ( k e. Z |-> A ) ~~> A )
9 1 2 3 7 5 8 6 climsubmpt
 |-  ( ph -> ( k e. Z |-> ( A - B ) ) ~~> ( A - C ) )