Step |
Hyp |
Ref |
Expression |
1 |
|
climsubmpt.k |
|- F/ k ph |
2 |
|
climsubmpt.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
climsubmpt.m |
|- ( ph -> M e. ZZ ) |
4 |
|
climsubmpt.a |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
5 |
|
climsubmpt.b |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
6 |
|
climsubmpt.c |
|- ( ph -> ( k e. Z |-> A ) ~~> C ) |
7 |
|
climsubmpt.d |
|- ( ph -> ( k e. Z |-> B ) ~~> D ) |
8 |
2
|
fvexi |
|- Z e. _V |
9 |
8
|
mptex |
|- ( k e. Z |-> ( A - B ) ) e. _V |
10 |
9
|
a1i |
|- ( ph -> ( k e. Z |-> ( A - B ) ) e. _V ) |
11 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
12 |
|
nfv |
|- F/ k j e. Z |
13 |
1 12
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
14 |
|
nfcv |
|- F/_ k j |
15 |
14
|
nfcsb1 |
|- F/_ k [_ j / k ]_ A |
16 |
15
|
nfel1 |
|- F/ k [_ j / k ]_ A e. CC |
17 |
13 16
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) |
18 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
19 |
18
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
20 |
|
csbeq1a |
|- ( k = j -> A = [_ j / k ]_ A ) |
21 |
20
|
eleq1d |
|- ( k = j -> ( A e. CC <-> [_ j / k ]_ A e. CC ) ) |
22 |
19 21
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> A e. CC ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) ) ) |
23 |
17 22 4
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) |
24 |
|
eqid |
|- ( k e. Z |-> A ) = ( k e. Z |-> A ) |
25 |
14 15 20 24
|
fvmptf |
|- ( ( j e. Z /\ [_ j / k ]_ A e. CC ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) |
26 |
11 23 25
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) |
27 |
26 23
|
eqeltrd |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) e. CC ) |
28 |
14
|
nfcsb1 |
|- F/_ k [_ j / k ]_ B |
29 |
|
nfcv |
|- F/_ k CC |
30 |
28 29
|
nfel |
|- F/ k [_ j / k ]_ B e. CC |
31 |
13 30
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ B e. CC ) |
32 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
33 |
32
|
eleq1d |
|- ( k = j -> ( B e. CC <-> [_ j / k ]_ B e. CC ) ) |
34 |
19 33
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> B e. CC ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ B e. CC ) ) ) |
35 |
31 34 5
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ B e. CC ) |
36 |
|
eqid |
|- ( k e. Z |-> B ) = ( k e. Z |-> B ) |
37 |
14 28 32 36
|
fvmptf |
|- ( ( j e. Z /\ [_ j / k ]_ B e. CC ) -> ( ( k e. Z |-> B ) ` j ) = [_ j / k ]_ B ) |
38 |
11 35 37
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> B ) ` j ) = [_ j / k ]_ B ) |
39 |
38 35
|
eqeltrd |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> B ) ` j ) e. CC ) |
40 |
|
ovexd |
|- ( ( ph /\ j e. Z ) -> ( [_ j / k ]_ A - [_ j / k ]_ B ) e. _V ) |
41 |
|
nfcv |
|- F/_ k - |
42 |
15 41 28
|
nfov |
|- F/_ k ( [_ j / k ]_ A - [_ j / k ]_ B ) |
43 |
20 32
|
oveq12d |
|- ( k = j -> ( A - B ) = ( [_ j / k ]_ A - [_ j / k ]_ B ) ) |
44 |
|
eqid |
|- ( k e. Z |-> ( A - B ) ) = ( k e. Z |-> ( A - B ) ) |
45 |
14 42 43 44
|
fvmptf |
|- ( ( j e. Z /\ ( [_ j / k ]_ A - [_ j / k ]_ B ) e. _V ) -> ( ( k e. Z |-> ( A - B ) ) ` j ) = ( [_ j / k ]_ A - [_ j / k ]_ B ) ) |
46 |
11 40 45
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> ( A - B ) ) ` j ) = ( [_ j / k ]_ A - [_ j / k ]_ B ) ) |
47 |
26 38
|
oveq12d |
|- ( ( ph /\ j e. Z ) -> ( ( ( k e. Z |-> A ) ` j ) - ( ( k e. Z |-> B ) ` j ) ) = ( [_ j / k ]_ A - [_ j / k ]_ B ) ) |
48 |
46 47
|
eqtr4d |
|- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> ( A - B ) ) ` j ) = ( ( ( k e. Z |-> A ) ` j ) - ( ( k e. Z |-> B ) ` j ) ) ) |
49 |
2 3 6 10 7 27 39 48
|
climsub |
|- ( ph -> ( k e. Z |-> ( A - B ) ) ~~> ( C - D ) ) |