Step |
Hyp |
Ref |
Expression |
1 |
|
climsuselem1.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climsuselem1.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climsuselem1.3 |
|- ( ph -> ( I ` M ) e. Z ) |
4 |
|
climsuselem1.4 |
|- ( ( ph /\ k e. Z ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
5 |
1
|
eleq2i |
|- ( K e. Z <-> K e. ( ZZ>= ` M ) ) |
6 |
5
|
biimpi |
|- ( K e. Z -> K e. ( ZZ>= ` M ) ) |
7 |
6
|
adantl |
|- ( ( ph /\ K e. Z ) -> K e. ( ZZ>= ` M ) ) |
8 |
|
simpl |
|- ( ( ph /\ K e. Z ) -> ph ) |
9 |
|
fveq2 |
|- ( j = M -> ( I ` j ) = ( I ` M ) ) |
10 |
|
fveq2 |
|- ( j = M -> ( ZZ>= ` j ) = ( ZZ>= ` M ) ) |
11 |
9 10
|
eleq12d |
|- ( j = M -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` M ) e. ( ZZ>= ` M ) ) ) |
12 |
11
|
imbi2d |
|- ( j = M -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) ) ) |
13 |
|
fveq2 |
|- ( j = k -> ( I ` j ) = ( I ` k ) ) |
14 |
|
fveq2 |
|- ( j = k -> ( ZZ>= ` j ) = ( ZZ>= ` k ) ) |
15 |
13 14
|
eleq12d |
|- ( j = k -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` k ) e. ( ZZ>= ` k ) ) ) |
16 |
15
|
imbi2d |
|- ( j = k -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) ) |
17 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( I ` j ) = ( I ` ( k + 1 ) ) ) |
18 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( k + 1 ) ) ) |
19 |
17 18
|
eleq12d |
|- ( j = ( k + 1 ) -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) |
20 |
19
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) ) |
21 |
|
fveq2 |
|- ( j = K -> ( I ` j ) = ( I ` K ) ) |
22 |
|
fveq2 |
|- ( j = K -> ( ZZ>= ` j ) = ( ZZ>= ` K ) ) |
23 |
21 22
|
eleq12d |
|- ( j = K -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` K ) e. ( ZZ>= ` K ) ) ) |
24 |
23
|
imbi2d |
|- ( j = K -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` K ) e. ( ZZ>= ` K ) ) ) ) |
25 |
3 1
|
eleqtrdi |
|- ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) |
26 |
25
|
a1i |
|- ( M e. ZZ -> ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) ) |
27 |
|
simpr |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ph ) |
28 |
|
simpll |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> k e. ( ZZ>= ` M ) ) |
29 |
|
simplr |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) |
30 |
27 29
|
mpd |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( I ` k ) e. ( ZZ>= ` k ) ) |
31 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
32 |
31
|
3ad2ant2 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k e. ZZ ) |
33 |
32
|
peano2zd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) e. ZZ ) |
34 |
33
|
zred |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) e. RR ) |
35 |
|
eluzelre |
|- ( ( I ` k ) e. ( ZZ>= ` k ) -> ( I ` k ) e. RR ) |
36 |
35
|
3ad2ant3 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` k ) e. RR ) |
37 |
|
1red |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> 1 e. RR ) |
38 |
36 37
|
readdcld |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` k ) + 1 ) e. RR ) |
39 |
1
|
eqimss2i |
|- ( ZZ>= ` M ) C_ Z |
40 |
39
|
a1i |
|- ( ph -> ( ZZ>= ` M ) C_ Z ) |
41 |
40
|
sseld |
|- ( ph -> ( k e. ( ZZ>= ` M ) -> k e. Z ) ) |
42 |
41
|
imdistani |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ph /\ k e. Z ) ) |
43 |
42 4
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
44 |
43
|
3adant3 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
45 |
|
eluzelz |
|- ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) -> ( I ` ( k + 1 ) ) e. ZZ ) |
46 |
44 45
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ZZ ) |
47 |
46
|
zred |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. RR ) |
48 |
32
|
zred |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k e. RR ) |
49 |
|
eluzle |
|- ( ( I ` k ) e. ( ZZ>= ` k ) -> k <_ ( I ` k ) ) |
50 |
49
|
3ad2ant3 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k <_ ( I ` k ) ) |
51 |
48 36 37 50
|
leadd1dd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) <_ ( ( I ` k ) + 1 ) ) |
52 |
|
eluzle |
|- ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) -> ( ( I ` k ) + 1 ) <_ ( I ` ( k + 1 ) ) ) |
53 |
44 52
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` k ) + 1 ) <_ ( I ` ( k + 1 ) ) ) |
54 |
34 38 47 51 53
|
letrd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) |
55 |
|
eluz |
|- ( ( ( k + 1 ) e. ZZ /\ ( I ` ( k + 1 ) ) e. ZZ ) -> ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) <-> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) ) |
56 |
33 46 55
|
syl2anc |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) <-> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) ) |
57 |
54 56
|
mpbird |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) |
58 |
27 28 30 57
|
syl3anc |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) |
59 |
58
|
exp31 |
|- ( k e. ( ZZ>= ` M ) -> ( ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ph -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) ) |
60 |
12 16 20 24 26 59
|
uzind4 |
|- ( K e. ( ZZ>= ` M ) -> ( ph -> ( I ` K ) e. ( ZZ>= ` K ) ) ) |
61 |
7 8 60
|
sylc |
|- ( ( ph /\ K e. Z ) -> ( I ` K ) e. ( ZZ>= ` K ) ) |