| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climub.2 |
|- ( ph -> N e. Z ) |
| 3 |
|
climub.3 |
|- ( ph -> F ~~> A ) |
| 4 |
|
climub.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 5 |
|
climub.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 6 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
| 7 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 8 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 9 |
7 8
|
syl |
|- ( ph -> N e. ZZ ) |
| 10 |
|
fveq2 |
|- ( k = N -> ( F ` k ) = ( F ` N ) ) |
| 11 |
10
|
eleq1d |
|- ( k = N -> ( ( F ` k ) e. RR <-> ( F ` N ) e. RR ) ) |
| 12 |
11
|
imbi2d |
|- ( k = N -> ( ( ph -> ( F ` k ) e. RR ) <-> ( ph -> ( F ` N ) e. RR ) ) ) |
| 13 |
4
|
expcom |
|- ( k e. Z -> ( ph -> ( F ` k ) e. RR ) ) |
| 14 |
12 13
|
vtoclga |
|- ( N e. Z -> ( ph -> ( F ` N ) e. RR ) ) |
| 15 |
2 14
|
mpcom |
|- ( ph -> ( F ` N ) e. RR ) |
| 16 |
1
|
uztrn2 |
|- ( ( N e. Z /\ j e. ( ZZ>= ` N ) ) -> j e. Z ) |
| 17 |
2 16
|
sylan |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> j e. Z ) |
| 18 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 19 |
18
|
eleq1d |
|- ( k = j -> ( ( F ` k ) e. RR <-> ( F ` j ) e. RR ) ) |
| 20 |
19
|
imbi2d |
|- ( k = j -> ( ( ph -> ( F ` k ) e. RR ) <-> ( ph -> ( F ` j ) e. RR ) ) ) |
| 21 |
20 13
|
vtoclga |
|- ( j e. Z -> ( ph -> ( F ` j ) e. RR ) ) |
| 22 |
21
|
impcom |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
| 23 |
17 22
|
syldan |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( F ` j ) e. RR ) |
| 24 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> j e. ( ZZ>= ` N ) ) |
| 25 |
|
elfzuz |
|- ( k e. ( N ... j ) -> k e. ( ZZ>= ` N ) ) |
| 26 |
1
|
uztrn2 |
|- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 27 |
2 26
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 28 |
27 4
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
| 29 |
25 28
|
sylan2 |
|- ( ( ph /\ k e. ( N ... j ) ) -> ( F ` k ) e. RR ) |
| 30 |
29
|
adantlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( N ... j ) ) -> ( F ` k ) e. RR ) |
| 31 |
|
elfzuz |
|- ( k e. ( N ... ( j - 1 ) ) -> k e. ( ZZ>= ` N ) ) |
| 32 |
27 5
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 33 |
31 32
|
sylan2 |
|- ( ( ph /\ k e. ( N ... ( j - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 34 |
33
|
adantlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( N ... ( j - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 35 |
24 30 34
|
monoord |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( F ` N ) <_ ( F ` j ) ) |
| 36 |
6 9 15 3 23 35
|
climlec2 |
|- ( ph -> ( F ` N ) <_ A ) |