Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climub.2 |
|- ( ph -> N e. Z ) |
3 |
|
climub.3 |
|- ( ph -> F ~~> A ) |
4 |
|
climub.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
5 |
|
climub.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
6 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
7 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
8 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
9 |
7 8
|
syl |
|- ( ph -> N e. ZZ ) |
10 |
|
fveq2 |
|- ( k = N -> ( F ` k ) = ( F ` N ) ) |
11 |
10
|
eleq1d |
|- ( k = N -> ( ( F ` k ) e. RR <-> ( F ` N ) e. RR ) ) |
12 |
11
|
imbi2d |
|- ( k = N -> ( ( ph -> ( F ` k ) e. RR ) <-> ( ph -> ( F ` N ) e. RR ) ) ) |
13 |
4
|
expcom |
|- ( k e. Z -> ( ph -> ( F ` k ) e. RR ) ) |
14 |
12 13
|
vtoclga |
|- ( N e. Z -> ( ph -> ( F ` N ) e. RR ) ) |
15 |
2 14
|
mpcom |
|- ( ph -> ( F ` N ) e. RR ) |
16 |
1
|
uztrn2 |
|- ( ( N e. Z /\ j e. ( ZZ>= ` N ) ) -> j e. Z ) |
17 |
2 16
|
sylan |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> j e. Z ) |
18 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
19 |
18
|
eleq1d |
|- ( k = j -> ( ( F ` k ) e. RR <-> ( F ` j ) e. RR ) ) |
20 |
19
|
imbi2d |
|- ( k = j -> ( ( ph -> ( F ` k ) e. RR ) <-> ( ph -> ( F ` j ) e. RR ) ) ) |
21 |
20 13
|
vtoclga |
|- ( j e. Z -> ( ph -> ( F ` j ) e. RR ) ) |
22 |
21
|
impcom |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
23 |
17 22
|
syldan |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( F ` j ) e. RR ) |
24 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> j e. ( ZZ>= ` N ) ) |
25 |
|
elfzuz |
|- ( k e. ( N ... j ) -> k e. ( ZZ>= ` N ) ) |
26 |
1
|
uztrn2 |
|- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
27 |
2 26
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
28 |
27 4
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
29 |
25 28
|
sylan2 |
|- ( ( ph /\ k e. ( N ... j ) ) -> ( F ` k ) e. RR ) |
30 |
29
|
adantlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( N ... j ) ) -> ( F ` k ) e. RR ) |
31 |
|
elfzuz |
|- ( k e. ( N ... ( j - 1 ) ) -> k e. ( ZZ>= ` N ) ) |
32 |
27 5
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
33 |
31 32
|
sylan2 |
|- ( ( ph /\ k e. ( N ... ( j - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
34 |
33
|
adantlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( N ... ( j - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
35 |
24 30 34
|
monoord |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( F ` N ) <_ ( F ` j ) ) |
36 |
6 9 15 3 23 35
|
climlec2 |
|- ( ph -> ( F ` N ) <_ A ) |