| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|- 1 e. ZZ |
| 2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 3 |
|
1zzd |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> 1 e. ZZ ) |
| 4 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A e. CC ) |
| 6 |
|
climcl |
|- ( F ~~> B -> B e. CC ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> B e. CC ) |
| 8 |
5 7
|
subcld |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) e. CC ) |
| 9 |
|
simp3 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A =/= B ) |
| 10 |
5 7 9
|
subne0d |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) =/= 0 ) |
| 11 |
8 10
|
absrpcld |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ ) |
| 12 |
11
|
rphalfcld |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( ( abs ` ( A - B ) ) / 2 ) e. RR+ ) |
| 13 |
|
eqidd |
|- ( ( ( F ~~> A /\ F ~~> B /\ A =/= B ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
| 14 |
|
simp1 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> A ) |
| 15 |
2 3 12 13 14
|
climi |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
| 16 |
|
simp2 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> B ) |
| 17 |
2 3 12 13 16
|
climi |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
| 18 |
2
|
rexanuz2 |
|- ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) <-> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
| 19 |
15 17 18
|
sylanbrc |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
| 20 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
| 21 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
| 22 |
|
ne0i |
|- ( j e. ( ZZ>= ` j ) -> ( ZZ>= ` j ) =/= (/) ) |
| 23 |
|
r19.2z |
|- ( ( ( ZZ>= ` j ) =/= (/) /\ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
| 24 |
23
|
ex |
|- ( ( ZZ>= ` j ) =/= (/) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) ) |
| 25 |
20 21 22 24
|
4syl |
|- ( j e. NN -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) ) |
| 26 |
|
simpr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( F ` k ) e. CC ) |
| 27 |
|
simpll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> A e. CC ) |
| 28 |
26 27
|
abssubd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( A - ( F ` k ) ) ) ) |
| 29 |
28
|
breq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) <-> ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
| 30 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> B e. CC ) |
| 31 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
| 32 |
31
|
adantr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( A - B ) e. CC ) |
| 33 |
32
|
abscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( A - B ) ) e. RR ) |
| 34 |
|
abs3lem |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( A - B ) ) e. RR ) ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) ) |
| 35 |
27 30 26 33 34
|
syl22anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) ) |
| 36 |
33
|
ltnrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> -. ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) |
| 37 |
36
|
pm2.21d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) -> -. 1 e. ZZ ) ) |
| 38 |
35 37
|
syld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) ) |
| 39 |
38
|
expd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) ) |
| 40 |
29 39
|
sylbid |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) ) |
| 41 |
40
|
impr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) |
| 42 |
41
|
adantld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) ) |
| 43 |
42
|
expimpd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 44 |
43
|
rexlimdvw |
|- ( ( A e. CC /\ B e. CC ) -> ( E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 45 |
25 44
|
sylan9r |
|- ( ( ( A e. CC /\ B e. CC ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 46 |
45
|
rexlimdva |
|- ( ( A e. CC /\ B e. CC ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 47 |
5 7 46
|
syl2anc |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 48 |
19 47
|
mpd |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> -. 1 e. ZZ ) |
| 49 |
48
|
3expia |
|- ( ( F ~~> A /\ F ~~> B ) -> ( A =/= B -> -. 1 e. ZZ ) ) |
| 50 |
49
|
necon4ad |
|- ( ( F ~~> A /\ F ~~> B ) -> ( 1 e. ZZ -> A = B ) ) |
| 51 |
1 50
|
mpi |
|- ( ( F ~~> A /\ F ~~> B ) -> A = B ) |