Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|- 1 e. ZZ |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
1zzd |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> 1 e. ZZ ) |
4 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
5 |
4
|
3ad2ant1 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A e. CC ) |
6 |
|
climcl |
|- ( F ~~> B -> B e. CC ) |
7 |
6
|
3ad2ant2 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> B e. CC ) |
8 |
5 7
|
subcld |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) e. CC ) |
9 |
|
simp3 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A =/= B ) |
10 |
5 7 9
|
subne0d |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) =/= 0 ) |
11 |
8 10
|
absrpcld |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ ) |
12 |
11
|
rphalfcld |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( ( abs ` ( A - B ) ) / 2 ) e. RR+ ) |
13 |
|
eqidd |
|- ( ( ( F ~~> A /\ F ~~> B /\ A =/= B ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
14 |
|
simp1 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> A ) |
15 |
2 3 12 13 14
|
climi |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
16 |
|
simp2 |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> B ) |
17 |
2 3 12 13 16
|
climi |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
18 |
2
|
rexanuz2 |
|- ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) <-> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
19 |
15 17 18
|
sylanbrc |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
20 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
21 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
22 |
|
ne0i |
|- ( j e. ( ZZ>= ` j ) -> ( ZZ>= ` j ) =/= (/) ) |
23 |
|
r19.2z |
|- ( ( ( ZZ>= ` j ) =/= (/) /\ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
24 |
23
|
ex |
|- ( ( ZZ>= ` j ) =/= (/) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) ) |
25 |
20 21 22 24
|
4syl |
|- ( j e. NN -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) ) |
26 |
|
simpr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( F ` k ) e. CC ) |
27 |
|
simpll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> A e. CC ) |
28 |
26 27
|
abssubd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( A - ( F ` k ) ) ) ) |
29 |
28
|
breq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) <-> ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
30 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> B e. CC ) |
31 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
32 |
31
|
adantr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( A - B ) e. CC ) |
33 |
32
|
abscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( A - B ) ) e. RR ) |
34 |
|
abs3lem |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( A - B ) ) e. RR ) ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) ) |
35 |
27 30 26 33 34
|
syl22anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) ) |
36 |
33
|
ltnrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> -. ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) |
37 |
36
|
pm2.21d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) -> -. 1 e. ZZ ) ) |
38 |
35 37
|
syld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) ) |
39 |
38
|
expd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) ) |
40 |
29 39
|
sylbid |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) ) |
41 |
40
|
impr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) |
42 |
41
|
adantld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) ) |
43 |
42
|
expimpd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
44 |
43
|
rexlimdvw |
|- ( ( A e. CC /\ B e. CC ) -> ( E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
45 |
25 44
|
sylan9r |
|- ( ( ( A e. CC /\ B e. CC ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
46 |
45
|
rexlimdva |
|- ( ( A e. CC /\ B e. CC ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
47 |
5 7 46
|
syl2anc |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
48 |
19 47
|
mpd |
|- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> -. 1 e. ZZ ) |
49 |
48
|
3expia |
|- ( ( F ~~> A /\ F ~~> B ) -> ( A =/= B -> -. 1 e. ZZ ) ) |
50 |
49
|
necon4ad |
|- ( ( F ~~> A /\ F ~~> B ) -> ( 1 e. ZZ -> A = B ) ) |
51 |
1 50
|
mpi |
|- ( ( F ~~> A /\ F ~~> B ) -> A = B ) |