Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
2 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
3 |
1 2
|
clmsubrg |
|- ( W e. CMod -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
4 |
|
eqid |
|- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
5 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
6 |
4 5
|
subrg0 |
|- ( ( Base ` F ) e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s ( Base ` F ) ) ) ) |
7 |
3 6
|
syl |
|- ( W e. CMod -> 0 = ( 0g ` ( CCfld |`s ( Base ` F ) ) ) ) |
8 |
1 2
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) ) |
9 |
8
|
fveq2d |
|- ( W e. CMod -> ( 0g ` F ) = ( 0g ` ( CCfld |`s ( Base ` F ) ) ) ) |
10 |
7 9
|
eqtr4d |
|- ( W e. CMod -> 0 = ( 0g ` F ) ) |