| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0vs.v |
|- V = ( Base ` W ) |
| 2 |
|
clm0vs.f |
|- F = ( Scalar ` W ) |
| 3 |
|
clm0vs.s |
|- .x. = ( .s ` W ) |
| 4 |
|
clm0vs.z |
|- .0. = ( 0g ` W ) |
| 5 |
2
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` F ) ) |
| 6 |
5
|
adantr |
|- ( ( W e. CMod /\ X e. V ) -> 0 = ( 0g ` F ) ) |
| 7 |
6
|
oveq1d |
|- ( ( W e. CMod /\ X e. V ) -> ( 0 .x. X ) = ( ( 0g ` F ) .x. X ) ) |
| 8 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 9 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 10 |
1 2 3 9 4
|
lmod0vs |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = .0. ) |
| 11 |
8 10
|
sylan |
|- ( ( W e. CMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = .0. ) |
| 12 |
7 11
|
eqtrd |
|- ( ( W e. CMod /\ X e. V ) -> ( 0 .x. X ) = .0. ) |