Metamath Proof Explorer


Theorem clm1

Description: The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f
|- F = ( Scalar ` W )
Assertion clm1
|- ( W e. CMod -> 1 = ( 1r ` F ) )

Proof

Step Hyp Ref Expression
1 clm0.f
 |-  F = ( Scalar ` W )
2 eqid
 |-  ( Base ` F ) = ( Base ` F )
3 1 2 clmsubrg
 |-  ( W e. CMod -> ( Base ` F ) e. ( SubRing ` CCfld ) )
4 eqid
 |-  ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) )
5 cnfld1
 |-  1 = ( 1r ` CCfld )
6 4 5 subrg1
 |-  ( ( Base ` F ) e. ( SubRing ` CCfld ) -> 1 = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) )
7 3 6 syl
 |-  ( W e. CMod -> 1 = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) )
8 1 2 clmsca
 |-  ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) )
9 8 fveq2d
 |-  ( W e. CMod -> ( 1r ` F ) = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) )
10 7 9 eqtr4d
 |-  ( W e. CMod -> 1 = ( 1r ` F ) )