| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
| 2 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 3 |
1 2
|
clmsubrg |
|- ( W e. CMod -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
| 4 |
|
eqid |
|- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
| 5 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 6 |
4 5
|
subrg1 |
|- ( ( Base ` F ) e. ( SubRing ` CCfld ) -> 1 = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 7 |
3 6
|
syl |
|- ( W e. CMod -> 1 = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 8 |
1 2
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 9 |
8
|
fveq2d |
|- ( W e. CMod -> ( 1r ` F ) = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 10 |
7 9
|
eqtr4d |
|- ( W e. CMod -> 1 = ( 1r ` F ) ) |