Description: A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clmabl | |- ( W e. CMod -> W e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 2 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 3 | 1 2 | syl | |- ( W e. CMod -> W e. Abel ) |