Metamath Proof Explorer


Theorem clmabl

Description: A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmabl
|- ( W e. CMod -> W e. Abel )

Proof

Step Hyp Ref Expression
1 clmlmod
 |-  ( W e. CMod -> W e. LMod )
2 lmodabl
 |-  ( W e. LMod -> W e. Abel )
3 1 2 syl
 |-  ( W e. CMod -> W e. Abel )