Description: A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | clmabl | |- ( W e. CMod -> W e. Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
2 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
3 | 1 2 | syl | |- ( W e. CMod -> W e. Abel ) |