Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
2 |
|
clmsub.k |
|- K = ( Base ` F ) |
3 |
1 2
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s K ) ) |
4 |
3
|
fveq2d |
|- ( W e. CMod -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) |
5 |
4
|
adantr |
|- ( ( W e. CMod /\ A e. K ) -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) |
6 |
5
|
fveq1d |
|- ( ( W e. CMod /\ A e. K ) -> ( ( norm ` F ) ` A ) = ( ( norm ` ( CCfld |`s K ) ) ` A ) ) |
7 |
1 2
|
clmsubrg |
|- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
8 |
|
subrgsubg |
|- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
9 |
7 8
|
syl |
|- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
10 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
11 |
|
cnfldnm |
|- abs = ( norm ` CCfld ) |
12 |
|
eqid |
|- ( norm ` ( CCfld |`s K ) ) = ( norm ` ( CCfld |`s K ) ) |
13 |
10 11 12
|
subgnm2 |
|- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) |
14 |
9 13
|
sylan |
|- ( ( W e. CMod /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) |
15 |
6 14
|
eqtr2d |
|- ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |