| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
| 2 |
|
clmsub.k |
|- K = ( Base ` F ) |
| 3 |
1 2
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s K ) ) |
| 4 |
3
|
fveq2d |
|- ( W e. CMod -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) |
| 5 |
4
|
adantr |
|- ( ( W e. CMod /\ A e. K ) -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) |
| 6 |
5
|
fveq1d |
|- ( ( W e. CMod /\ A e. K ) -> ( ( norm ` F ) ` A ) = ( ( norm ` ( CCfld |`s K ) ) ` A ) ) |
| 7 |
1 2
|
clmsubrg |
|- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 8 |
|
subrgsubg |
|- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
| 9 |
7 8
|
syl |
|- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
| 10 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
| 11 |
|
cnfldnm |
|- abs = ( norm ` CCfld ) |
| 12 |
|
eqid |
|- ( norm ` ( CCfld |`s K ) ) = ( norm ` ( CCfld |`s K ) ) |
| 13 |
10 11 12
|
subgnm2 |
|- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) |
| 14 |
9 13
|
sylan |
|- ( ( W e. CMod /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) |
| 15 |
6 14
|
eqtr2d |
|- ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |