Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clm0.f | |- F = ( Scalar ` W ) |
|
Assertion | clmfgrp | |- ( W e. CMod -> F e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | |- F = ( Scalar ` W ) |
|
2 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
3 | 1 | lmodfgrp | |- ( W e. LMod -> F e. Grp ) |
4 | 2 3 | syl | |- ( W e. CMod -> F e. Grp ) |