Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clm0.f | |- F = ( Scalar ` W ) |
|
| Assertion | clmfgrp | |- ( W e. CMod -> F e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 3 | 1 | lmodfgrp | |- ( W e. LMod -> F e. Grp ) |
| 4 | 2 3 | syl | |- ( W e. CMod -> F e. Grp ) |