Metamath Proof Explorer


Theorem clmfgrp

Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f
|- F = ( Scalar ` W )
Assertion clmfgrp
|- ( W e. CMod -> F e. Grp )

Proof

Step Hyp Ref Expression
1 clm0.f
 |-  F = ( Scalar ` W )
2 clmlmod
 |-  ( W e. CMod -> W e. LMod )
3 1 lmodfgrp
 |-  ( W e. LMod -> F e. Grp )
4 2 3 syl
 |-  ( W e. CMod -> F e. Grp )