Metamath Proof Explorer


Theorem clmgmOLD

Description: Obsolete version of mgmcl as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis clmgmOLD.1
|- X = dom dom G
Assertion clmgmOLD
|- ( ( G e. Magma /\ A e. X /\ B e. X ) -> ( A G B ) e. X )

Proof

Step Hyp Ref Expression
1 clmgmOLD.1
 |-  X = dom dom G
2 1 ismgmOLD
 |-  ( G e. Magma -> ( G e. Magma <-> G : ( X X. X ) --> X ) )
3 fovrn
 |-  ( ( G : ( X X. X ) --> X /\ A e. X /\ B e. X ) -> ( A G B ) e. X )
4 3 3exp
 |-  ( G : ( X X. X ) --> X -> ( A e. X -> ( B e. X -> ( A G B ) e. X ) ) )
5 2 4 syl6bi
 |-  ( G e. Magma -> ( G e. Magma -> ( A e. X -> ( B e. X -> ( A G B ) e. X ) ) ) )
6 5 pm2.43i
 |-  ( G e. Magma -> ( A e. X -> ( B e. X -> ( A G B ) e. X ) ) )
7 6 3imp
 |-  ( ( G e. Magma /\ A e. X /\ B e. X ) -> ( A G B ) e. X )