Step |
Hyp |
Ref |
Expression |
1 |
|
clmgmOLD.1 |
|- X = dom dom G |
2 |
1
|
ismgmOLD |
|- ( G e. Magma -> ( G e. Magma <-> G : ( X X. X ) --> X ) ) |
3 |
|
fovrn |
|- ( ( G : ( X X. X ) --> X /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
4 |
3
|
3exp |
|- ( G : ( X X. X ) --> X -> ( A e. X -> ( B e. X -> ( A G B ) e. X ) ) ) |
5 |
2 4
|
syl6bi |
|- ( G e. Magma -> ( G e. Magma -> ( A e. X -> ( B e. X -> ( A G B ) e. X ) ) ) ) |
6 |
5
|
pm2.43i |
|- ( G e. Magma -> ( A e. X -> ( B e. X -> ( A G B ) e. X ) ) ) |
7 |
6
|
3imp |
|- ( ( G e. Magma /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |