Metamath Proof Explorer


Theorem clmgrp

Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmgrp
|- ( W e. CMod -> W e. Grp )

Proof

Step Hyp Ref Expression
1 clmlmod
 |-  ( W e. CMod -> W e. LMod )
2 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
3 1 2 syl
 |-  ( W e. CMod -> W e. Grp )