Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | clmlmod | |- ( W e. CMod -> W e. LMod ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
2 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
3 | 1 2 | isclm | |- ( W e. CMod <-> ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) ) |
4 | 3 | simp1bi | |- ( W e. CMod -> W e. LMod ) |