| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
| 2 |
|
fvex |
|- ( Base ` F ) e. _V |
| 3 |
|
eqid |
|- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
| 4 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 5 |
3 4
|
ressmulr |
|- ( ( Base ` F ) e. _V -> x. = ( .r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 6 |
2 5
|
ax-mp |
|- x. = ( .r ` ( CCfld |`s ( Base ` F ) ) ) |
| 7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 8 |
1 7
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 9 |
8
|
fveq2d |
|- ( W e. CMod -> ( .r ` F ) = ( .r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 10 |
6 9
|
eqtr4id |
|- ( W e. CMod -> x. = ( .r ` F ) ) |