Description: Minus one is in the scalar ring of a subcomplex module. (Contributed by AV, 28-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
clmsub.k | |- K = ( Base ` F ) |
||
Assertion | clmneg1 | |- ( W e. CMod -> -u 1 e. K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | |- F = ( Scalar ` W ) |
|
2 | clmsub.k | |- K = ( Base ` F ) |
|
3 | 1 2 | clmzss | |- ( W e. CMod -> ZZ C_ K ) |
4 | neg1z | |- -u 1 e. ZZ |
|
5 | ssel | |- ( ZZ C_ K -> ( -u 1 e. ZZ -> -u 1 e. K ) ) |
|
6 | 3 4 5 | mpisyl | |- ( W e. CMod -> -u 1 e. K ) |