Metamath Proof Explorer


Theorem clmneg1

Description: Minus one is in the scalar ring of a subcomplex module. (Contributed by AV, 28-Sep-2021)

Ref Expression
Hypotheses clm0.f
|- F = ( Scalar ` W )
clmsub.k
|- K = ( Base ` F )
Assertion clmneg1
|- ( W e. CMod -> -u 1 e. K )

Proof

Step Hyp Ref Expression
1 clm0.f
 |-  F = ( Scalar ` W )
2 clmsub.k
 |-  K = ( Base ` F )
3 1 2 clmzss
 |-  ( W e. CMod -> ZZ C_ K )
4 neg1z
 |-  -u 1 e. ZZ
5 ssel
 |-  ( ZZ C_ K -> ( -u 1 e. ZZ -> -u 1 e. K ) )
6 3 4 5 mpisyl
 |-  ( W e. CMod -> -u 1 e. K )