| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmopfne.t |  |-  .x. = ( .sf ` W ) | 
						
							| 2 |  | clmopfne.a |  |-  .+ = ( +f ` W ) | 
						
							| 3 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 4 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 5 | 4 | a1i |  |-  ( W e. CMod -> 1 =/= 0 ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 7 | 6 | clm1 |  |-  ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) | 
						
							| 8 | 6 | clm0 |  |-  ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 9 | 5 7 8 | 3netr3d |  |-  ( W e. CMod -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 11 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 13 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 14 | 1 2 10 6 11 12 13 | lmodfopne |  |-  ( ( W e. LMod /\ ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) -> .+ =/= .x. ) | 
						
							| 15 | 3 9 14 | syl2anc |  |-  ( W e. CMod -> .+ =/= .x. ) |