Step |
Hyp |
Ref |
Expression |
1 |
|
clmopfne.t |
|- .x. = ( .sf ` W ) |
2 |
|
clmopfne.a |
|- .+ = ( +f ` W ) |
3 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
4 |
|
ax-1ne0 |
|- 1 =/= 0 |
5 |
4
|
a1i |
|- ( W e. CMod -> 1 =/= 0 ) |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
6
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
8 |
6
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
9 |
5 7 8
|
3netr3d |
|- ( W e. CMod -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
10 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
11 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
12 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
13 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
14 |
1 2 10 6 11 12 13
|
lmodfopne |
|- ( ( W e. LMod /\ ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) -> .+ =/= .x. ) |
15 |
3 9 14
|
syl2anc |
|- ( W e. CMod -> .+ =/= .x. ) |