Metamath Proof Explorer


Theorem clmring

Description: The scalar ring of a subcomplex module is a ring. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f
|- F = ( Scalar ` W )
Assertion clmring
|- ( W e. CMod -> F e. Ring )

Proof

Step Hyp Ref Expression
1 clm0.f
 |-  F = ( Scalar ` W )
2 clmlmod
 |-  ( W e. CMod -> W e. LMod )
3 1 lmodring
 |-  ( W e. LMod -> F e. Ring )
4 2 3 syl
 |-  ( W e. CMod -> F e. Ring )