Description: The ring of scalars F of a subcomplex module is the restriction of the field of complex numbers to the base set of F . (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isclm.f | |- F = ( Scalar ` W ) |
|
isclm.k | |- K = ( Base ` F ) |
||
Assertion | clmsca | |- ( W e. CMod -> F = ( CCfld |`s K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclm.f | |- F = ( Scalar ` W ) |
|
2 | isclm.k | |- K = ( Base ` F ) |
|
3 | 1 2 | isclm | |- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) |
4 | 3 | simp2bi | |- ( W e. CMod -> F = ( CCfld |`s K ) ) |