Metamath Proof Explorer


Theorem clmsscn

Description: The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f
|- F = ( Scalar ` W )
clmsub.k
|- K = ( Base ` F )
Assertion clmsscn
|- ( W e. CMod -> K C_ CC )

Proof

Step Hyp Ref Expression
1 clm0.f
 |-  F = ( Scalar ` W )
2 clmsub.k
 |-  K = ( Base ` F )
3 1 2 clmsubrg
 |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) )
4 cnfldbas
 |-  CC = ( Base ` CCfld )
5 4 subrgss
 |-  ( K e. ( SubRing ` CCfld ) -> K C_ CC )
6 3 5 syl
 |-  ( W e. CMod -> K C_ CC )