Description: The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
| clmsub.k | |- K = ( Base ` F ) |
||
| Assertion | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | clmsub.k | |- K = ( Base ` F ) |
|
| 3 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 4 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 5 | 4 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 6 | 3 5 | syl | |- ( W e. CMod -> K C_ CC ) |