Description: The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
clmsub.k | |- K = ( Base ` F ) |
||
Assertion | clmsscn | |- ( W e. CMod -> K C_ CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | |- F = ( Scalar ` W ) |
|
2 | clmsub.k | |- K = ( Base ` F ) |
|
3 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
4 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
5 | 4 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
6 | 3 5 | syl | |- ( W e. CMod -> K C_ CC ) |