Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
|- F = ( Scalar ` W ) |
2 |
|
clmsub.k |
|- K = ( Base ` F ) |
3 |
1 2
|
clmsubrg |
|- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
4 |
|
subrgsubg |
|- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
5 |
3 4
|
syl |
|- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
6 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
7 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
8 |
|
eqid |
|- ( -g ` ( CCfld |`s K ) ) = ( -g ` ( CCfld |`s K ) ) |
9 |
6 7 8
|
subgsub |
|- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
10 |
5 9
|
syl3an1 |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
11 |
1 2
|
clmsca |
|- ( W e. CMod -> F = ( CCfld |`s K ) ) |
12 |
11
|
fveq2d |
|- ( W e. CMod -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) |
14 |
13
|
oveqd |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A ( -g ` F ) B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
15 |
10 14
|
eqtr4d |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) |