Description: Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
clmsub.k | |- K = ( Base ` F ) |
||
Assertion | clmsubcl | |- ( ( W e. CMod /\ X e. K /\ Y e. K ) -> ( X - Y ) e. K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | |- F = ( Scalar ` W ) |
|
2 | clmsub.k | |- K = ( Base ` F ) |
|
3 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
4 | subrgsubg | |- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
|
5 | 3 4 | syl | |- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
6 | cnfldsub | |- - = ( -g ` CCfld ) |
|
7 | 6 | subgsubcl | |- ( ( K e. ( SubGrp ` CCfld ) /\ X e. K /\ Y e. K ) -> ( X - Y ) e. K ) |
8 | 5 7 | syl3an1 | |- ( ( W e. CMod /\ X e. K /\ Y e. K ) -> ( X - Y ) e. K ) |