Metamath Proof Explorer


Theorem clmsubcl

Description: Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f
|- F = ( Scalar ` W )
clmsub.k
|- K = ( Base ` F )
Assertion clmsubcl
|- ( ( W e. CMod /\ X e. K /\ Y e. K ) -> ( X - Y ) e. K )

Proof

Step Hyp Ref Expression
1 clm0.f
 |-  F = ( Scalar ` W )
2 clmsub.k
 |-  K = ( Base ` F )
3 1 2 clmsubrg
 |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) )
4 subrgsubg
 |-  ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) )
5 3 4 syl
 |-  ( W e. CMod -> K e. ( SubGrp ` CCfld ) )
6 cnfldsub
 |-  - = ( -g ` CCfld )
7 6 subgsubcl
 |-  ( ( K e. ( SubGrp ` CCfld ) /\ X e. K /\ Y e. K ) -> ( X - Y ) e. K )
8 5 7 syl3an1
 |-  ( ( W e. CMod /\ X e. K /\ Y e. K ) -> ( X - Y ) e. K )