Step |
Hyp |
Ref |
Expression |
1 |
|
clmsubdir.v |
|- V = ( Base ` W ) |
2 |
|
clmsubdir.t |
|- .x. = ( .s ` W ) |
3 |
|
clmsubdir.f |
|- F = ( Scalar ` W ) |
4 |
|
clmsubdir.k |
|- K = ( Base ` F ) |
5 |
|
clmsubdir.m |
|- .- = ( -g ` W ) |
6 |
|
clmsubdir.w |
|- ( ph -> W e. CMod ) |
7 |
|
clmsubdir.a |
|- ( ph -> A e. K ) |
8 |
|
clmsubdir.b |
|- ( ph -> B e. K ) |
9 |
|
clmsubdir.x |
|- ( ph -> X e. V ) |
10 |
3 4
|
clmsub |
|- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) |
11 |
6 7 8 10
|
syl3anc |
|- ( ph -> ( A - B ) = ( A ( -g ` F ) B ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( ( A - B ) .x. X ) = ( ( A ( -g ` F ) B ) .x. X ) ) |
13 |
|
eqid |
|- ( -g ` F ) = ( -g ` F ) |
14 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
15 |
6 14
|
syl |
|- ( ph -> W e. LMod ) |
16 |
1 2 3 4 5 13 15 7 8 9
|
lmodsubdir |
|- ( ph -> ( ( A ( -g ` F ) B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |
17 |
12 16
|
eqtrd |
|- ( ph -> ( ( A - B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |