Metamath Proof Explorer


Theorem clmsubrg

Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses isclm.f
|- F = ( Scalar ` W )
isclm.k
|- K = ( Base ` F )
Assertion clmsubrg
|- ( W e. CMod -> K e. ( SubRing ` CCfld ) )

Proof

Step Hyp Ref Expression
1 isclm.f
 |-  F = ( Scalar ` W )
2 isclm.k
 |-  K = ( Base ` F )
3 1 2 isclm
 |-  ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) )
4 3 simp3bi
 |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) )