Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isclm.f | |- F = ( Scalar ` W ) |
|
isclm.k | |- K = ( Base ` F ) |
||
Assertion | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclm.f | |- F = ( Scalar ` W ) |
|
2 | isclm.k | |- K = ( Base ` F ) |
|
3 | 1 2 | isclm | |- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) |
4 | 3 | simp3bi | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |