Step |
Hyp |
Ref |
Expression |
1 |
|
clmvneg1.v |
|- V = ( Base ` W ) |
2 |
|
clmvneg1.n |
|- N = ( invg ` W ) |
3 |
|
clmvneg1.f |
|- F = ( Scalar ` W ) |
4 |
|
clmvneg1.s |
|- .x. = ( .s ` W ) |
5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
6 |
3 5
|
clmzss |
|- ( W e. CMod -> ZZ C_ ( Base ` F ) ) |
7 |
|
1zzd |
|- ( W e. CMod -> 1 e. ZZ ) |
8 |
6 7
|
sseldd |
|- ( W e. CMod -> 1 e. ( Base ` F ) ) |
9 |
3 5
|
clmneg |
|- ( ( W e. CMod /\ 1 e. ( Base ` F ) ) -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
10 |
8 9
|
mpdan |
|- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
11 |
3
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` F ) ) |
12 |
11
|
fveq2d |
|- ( W e. CMod -> ( ( invg ` F ) ` 1 ) = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
13 |
10 12
|
eqtrd |
|- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
14 |
13
|
adantr |
|- ( ( W e. CMod /\ X e. V ) -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
15 |
14
|
oveq1d |
|- ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) ) |
16 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
17 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
18 |
|
eqid |
|- ( invg ` F ) = ( invg ` F ) |
19 |
1 2 3 4 17 18
|
lmodvneg1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) |
20 |
16 19
|
sylan |
|- ( ( W e. CMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) |
21 |
15 20
|
eqtrd |
|- ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( N ` X ) ) |