| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvneg1.v |
|- V = ( Base ` W ) |
| 2 |
|
clmvneg1.n |
|- N = ( invg ` W ) |
| 3 |
|
clmvneg1.f |
|- F = ( Scalar ` W ) |
| 4 |
|
clmvneg1.s |
|- .x. = ( .s ` W ) |
| 5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 6 |
3 5
|
clmzss |
|- ( W e. CMod -> ZZ C_ ( Base ` F ) ) |
| 7 |
|
1zzd |
|- ( W e. CMod -> 1 e. ZZ ) |
| 8 |
6 7
|
sseldd |
|- ( W e. CMod -> 1 e. ( Base ` F ) ) |
| 9 |
3 5
|
clmneg |
|- ( ( W e. CMod /\ 1 e. ( Base ` F ) ) -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 10 |
8 9
|
mpdan |
|- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 11 |
3
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` F ) ) |
| 12 |
11
|
fveq2d |
|- ( W e. CMod -> ( ( invg ` F ) ` 1 ) = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
| 13 |
10 12
|
eqtrd |
|- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
| 14 |
13
|
adantr |
|- ( ( W e. CMod /\ X e. V ) -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
| 15 |
14
|
oveq1d |
|- ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) ) |
| 16 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 17 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 18 |
|
eqid |
|- ( invg ` F ) = ( invg ` F ) |
| 19 |
1 2 3 4 17 18
|
lmodvneg1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) |
| 20 |
16 19
|
sylan |
|- ( ( W e. CMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) |
| 21 |
15 20
|
eqtrd |
|- ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( N ` X ) ) |