| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvs1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmvs1.s |  |-  .x. = ( .s ` W ) | 
						
							| 3 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 4 | 3 | clm1 |  |-  ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( W e. CMod /\ X e. V ) -> 1 = ( 1r ` ( Scalar ` W ) ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = ( ( 1r ` ( Scalar ` W ) ) .x. X ) ) | 
						
							| 7 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 9 | 1 3 2 8 | lmodvs1 |  |-  ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) .x. X ) = X ) | 
						
							| 10 | 7 9 | sylan |  |-  ( ( W e. CMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) .x. X ) = X ) | 
						
							| 11 | 6 10 | eqtrd |  |-  ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = X ) |