Step |
Hyp |
Ref |
Expression |
1 |
|
clmvs1.v |
|- V = ( Base ` W ) |
2 |
|
clmvs1.s |
|- .x. = ( .s ` W ) |
3 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
4 |
3
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
5 |
4
|
adantr |
|- ( ( W e. CMod /\ X e. V ) -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
6 |
5
|
oveq1d |
|- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = ( ( 1r ` ( Scalar ` W ) ) .x. X ) ) |
7 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
8 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
9 |
1 3 2 8
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) .x. X ) = X ) |
10 |
7 9
|
sylan |
|- ( ( W e. CMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) .x. X ) = X ) |
11 |
6 10
|
eqtrd |
|- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = X ) |