Step |
Hyp |
Ref |
Expression |
1 |
|
clmvs1.v |
|- V = ( Base ` W ) |
2 |
|
clmvs1.s |
|- .x. = ( .s ` W ) |
3 |
|
clmvs2.a |
|- .+ = ( +g ` W ) |
4 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
5 |
4
|
oveq1i |
|- ( 2 .x. A ) = ( ( 1 + 1 ) .x. A ) |
6 |
5
|
a1i |
|- ( ( W e. CMod /\ A e. V ) -> ( 2 .x. A ) = ( ( 1 + 1 ) .x. A ) ) |
7 |
|
simpl |
|- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
8 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
9 |
8
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
10 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
11 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
12 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
13 |
8 11 12
|
lmod1cl |
|- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
14 |
10 13
|
syl |
|- ( W e. CMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
15 |
9 14
|
eqeltrd |
|- ( W e. CMod -> 1 e. ( Base ` ( Scalar ` W ) ) ) |
16 |
15
|
adantr |
|- ( ( W e. CMod /\ A e. V ) -> 1 e. ( Base ` ( Scalar ` W ) ) ) |
17 |
|
simpr |
|- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
18 |
1 8 2 11 3
|
clmvsdir |
|- ( ( W e. CMod /\ ( 1 e. ( Base ` ( Scalar ` W ) ) /\ 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) ) -> ( ( 1 + 1 ) .x. A ) = ( ( 1 .x. A ) .+ ( 1 .x. A ) ) ) |
19 |
7 16 16 17 18
|
syl13anc |
|- ( ( W e. CMod /\ A e. V ) -> ( ( 1 + 1 ) .x. A ) = ( ( 1 .x. A ) .+ ( 1 .x. A ) ) ) |
20 |
1 2
|
clmvs1 |
|- ( ( W e. CMod /\ A e. V ) -> ( 1 .x. A ) = A ) |
21 |
20 20
|
oveq12d |
|- ( ( W e. CMod /\ A e. V ) -> ( ( 1 .x. A ) .+ ( 1 .x. A ) ) = ( A .+ A ) ) |
22 |
6 19 21
|
3eqtrrd |
|- ( ( W e. CMod /\ A e. V ) -> ( A .+ A ) = ( 2 .x. A ) ) |