| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvscl.v |
|- V = ( Base ` W ) |
| 2 |
|
clmvscl.f |
|- F = ( Scalar ` W ) |
| 3 |
|
clmvscl.s |
|- .x. = ( .s ` W ) |
| 4 |
|
clmvscl.k |
|- K = ( Base ` F ) |
| 5 |
2
|
clmmul |
|- ( W e. CMod -> x. = ( .r ` F ) ) |
| 6 |
5
|
adantr |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> x. = ( .r ` F ) ) |
| 7 |
6
|
oveqd |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q x. R ) = ( Q ( .r ` F ) R ) ) |
| 8 |
7
|
oveq1d |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( ( Q ( .r ` F ) R ) .x. X ) ) |
| 9 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 10 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 11 |
1 2 3 4 10
|
lmodvsass |
|- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( .r ` F ) R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 12 |
9 11
|
sylan |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( .r ` F ) R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 13 |
8 12
|
eqtrd |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |