Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl . (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | |- V = ( Base ` W ) | |
| clmvscl.f | |- F = ( Scalar ` W ) | ||
| clmvscl.s | |- .x. = ( .s ` W ) | ||
| clmvscl.k | |- K = ( Base ` F ) | ||
| Assertion | clmvscl | |- ( ( W e. CMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clmvscl.v | |- V = ( Base ` W ) | |
| 2 | clmvscl.f | |- F = ( Scalar ` W ) | |
| 3 | clmvscl.s | |- .x. = ( .s ` W ) | |
| 4 | clmvscl.k | |- K = ( Base ` F ) | |
| 5 | clmlmod | |- ( W e. CMod -> W e. LMod ) | |
| 6 | 1 2 3 4 | lmodvscl | |- ( ( W e. LMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V ) | 
| 7 | 5 6 | syl3an1 | |- ( ( W e. CMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V ) |