Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl . (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clmvscl.v | |- V = ( Base ` W ) |
|
clmvscl.f | |- F = ( Scalar ` W ) |
||
clmvscl.s | |- .x. = ( .s ` W ) |
||
clmvscl.k | |- K = ( Base ` F ) |
||
Assertion | clmvscl | |- ( ( W e. CMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmvscl.v | |- V = ( Base ` W ) |
|
2 | clmvscl.f | |- F = ( Scalar ` W ) |
|
3 | clmvscl.s | |- .x. = ( .s ` W ) |
|
4 | clmvscl.k | |- K = ( Base ` F ) |
|
5 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
6 | 1 2 3 4 | lmodvscl | |- ( ( W e. LMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V ) |
7 | 5 6 | syl3an1 | |- ( ( W e. CMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V ) |