Metamath Proof Explorer


Theorem clmvscl

Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl . (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmvscl.v
|- V = ( Base ` W )
clmvscl.f
|- F = ( Scalar ` W )
clmvscl.s
|- .x. = ( .s ` W )
clmvscl.k
|- K = ( Base ` F )
Assertion clmvscl
|- ( ( W e. CMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V )

Proof

Step Hyp Ref Expression
1 clmvscl.v
 |-  V = ( Base ` W )
2 clmvscl.f
 |-  F = ( Scalar ` W )
3 clmvscl.s
 |-  .x. = ( .s ` W )
4 clmvscl.k
 |-  K = ( Base ` F )
5 clmlmod
 |-  ( W e. CMod -> W e. LMod )
6 1 2 3 4 lmodvscl
 |-  ( ( W e. LMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V )
7 5 6 syl3an1
 |-  ( ( W e. CMod /\ Q e. K /\ X e. V ) -> ( Q .x. X ) e. V )