Step |
Hyp |
Ref |
Expression |
1 |
|
clmvscl.v |
|- V = ( Base ` W ) |
2 |
|
clmvscl.f |
|- F = ( Scalar ` W ) |
3 |
|
clmvscl.s |
|- .x. = ( .s ` W ) |
4 |
|
clmvscl.k |
|- K = ( Base ` F ) |
5 |
|
ssel |
|- ( K C_ CC -> ( Q e. K -> Q e. CC ) ) |
6 |
|
ssel |
|- ( K C_ CC -> ( R e. K -> R e. CC ) ) |
7 |
5 6
|
anim12d |
|- ( K C_ CC -> ( ( Q e. K /\ R e. K ) -> ( Q e. CC /\ R e. CC ) ) ) |
8 |
2 4
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
9 |
7 8
|
syl11 |
|- ( ( Q e. K /\ R e. K ) -> ( W e. CMod -> ( Q e. CC /\ R e. CC ) ) ) |
10 |
9
|
3adant3 |
|- ( ( Q e. K /\ R e. K /\ X e. V ) -> ( W e. CMod -> ( Q e. CC /\ R e. CC ) ) ) |
11 |
10
|
impcom |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q e. CC /\ R e. CC ) ) |
12 |
|
mulcom |
|- ( ( Q e. CC /\ R e. CC ) -> ( Q x. R ) = ( R x. Q ) ) |
13 |
11 12
|
syl |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q x. R ) = ( R x. Q ) ) |
14 |
13
|
oveq1d |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( ( R x. Q ) .x. X ) ) |
15 |
1 2 3 4
|
clmvsass |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
16 |
|
3ancoma |
|- ( ( Q e. K /\ R e. K /\ X e. V ) <-> ( R e. K /\ Q e. K /\ X e. V ) ) |
17 |
1 2 3 4
|
clmvsass |
|- ( ( W e. CMod /\ ( R e. K /\ Q e. K /\ X e. V ) ) -> ( ( R x. Q ) .x. X ) = ( R .x. ( Q .x. X ) ) ) |
18 |
16 17
|
sylan2b |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( R x. Q ) .x. X ) = ( R .x. ( Q .x. X ) ) ) |
19 |
14 15 18
|
3eqtr3d |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q .x. ( R .x. X ) ) = ( R .x. ( Q .x. X ) ) ) |