Metamath Proof Explorer


Theorem clmvsdi

Description: Distributive law for scalar product (left-distributivity). ( lmodvsdi analog.) (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmvscl.v
|- V = ( Base ` W )
clmvscl.f
|- F = ( Scalar ` W )
clmvscl.s
|- .x. = ( .s ` W )
clmvscl.k
|- K = ( Base ` F )
clmvsdir.a
|- .+ = ( +g ` W )
Assertion clmvsdi
|- ( ( W e. CMod /\ ( A e. K /\ X e. V /\ Y e. V ) ) -> ( A .x. ( X .+ Y ) ) = ( ( A .x. X ) .+ ( A .x. Y ) ) )

Proof

Step Hyp Ref Expression
1 clmvscl.v
 |-  V = ( Base ` W )
2 clmvscl.f
 |-  F = ( Scalar ` W )
3 clmvscl.s
 |-  .x. = ( .s ` W )
4 clmvscl.k
 |-  K = ( Base ` F )
5 clmvsdir.a
 |-  .+ = ( +g ` W )
6 clmlmod
 |-  ( W e. CMod -> W e. LMod )
7 1 5 2 3 4 lmodvsdi
 |-  ( ( W e. LMod /\ ( A e. K /\ X e. V /\ Y e. V ) ) -> ( A .x. ( X .+ Y ) ) = ( ( A .x. X ) .+ ( A .x. Y ) ) )
8 6 7 sylan
 |-  ( ( W e. CMod /\ ( A e. K /\ X e. V /\ Y e. V ) ) -> ( A .x. ( X .+ Y ) ) = ( ( A .x. X ) .+ ( A .x. Y ) ) )